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ABSTRACT 
Although Mel-frequency Cepstral Coefficients (MFCC) have 
been proven to perform very well under most conditions, some 
limited efforts have been made in optimizing the shape of the 
filters in the filter-bank in the conventional MFCC approach. 
This paper presents a new feature extraction approach that 
designs the shapes of the filters in the filter-bank. In this new 
approach the filter-bank coefficients are data-driven obtained by 
applying the principal component analysis (PCA) on the FFT 
spectrum of the training data. The experimental results show that 
this method is robust under noisy environment and is well 
additive with other noise-handling techniques. 
 

1. INTRODUCTION 

Feature extraction is a very important key element in speech 
recognition since it is the first step of the whole recognition 
process and it produces the parameters on which the recognition 
algorithm is based. If the feature parameters used are not well 
extracted, the recognition performance is naturally limited. Mel-
frequency cepstral coefficients (MFCC) are the most widely 
used feature parameters currently, while linear predictive 
cepstral coefficients (LPCC) were also used in some systems. 
Usually MFCC offers a performance better than what LPCC 
does, especially in noisy environment, but it is generally 
believed that it is highly desired to have feature parameters 
better than MFCC. Substantial efforts have been made in this 
area, and quite many new approaches to produce feature 
parameters with better recognition performance than MFCC at 
least under some test environments have been proposed [1] [2] 
[3] [4]. Techniques like Linear Discriminant Analysis (LDA) [5] 
and Heteroscedastic Linear Discriminant Analysis (HLDA) [6] 
have been proposed to improve the discriminating capabilities of 
the original features. Although different criteria were used, these 
methods tried to search for a transformation matrix by which the 
original feature representation can be reduced in its dimension 
while the recognition performance can be improved or at least 
maintained. 

In the original MFCC feature extraction process there are in 
fact two steps also related to dimension reduction. One is the 
Mel-scaled filter-bank processing. In each frequency band, the 
frequency components are weighted according to the filter 
frequency response and then accumulated to a value 
representing the total energy of that band. The other step of 
dimension reduction is performed in the transformation from the 
log-spectral domain to the cepstral domain, where the size of the 
resulted cepstral features is often less than that in the log-

spectral domain. Both of these two steps may probably result in 
some information loss from the original signal, although it is 
widely accepted that such steps are helpful in extracting the 
useful components in speech signals for recognition. Since the 
Mel-scaled filter-bank plays a very important role in feature 
extraction process, it is re-considered here in this paper. 
Conventionally, triangular filters are used in the filter-bank in 
the MFCC derivation process [7], which seems to be a 
reasonably good but relatively rough solution. However, it 
seems that not too many efforts have been reported in trying to 
optimize the shape of each filter in the filter-bank. In fact, the 
shape of the above filter also has to do with the signal-to-noise 
ratio of the filter output. For example, if the noise added to the 
clean signal is white, then different frequency components have 
different signal-to-noise ratios (SNRs) since the noise 
components are roughly the same for all frequencies while the 
speech components are not. The filter shape determines the 
weights on different signal components in the same frequency 
band, and thus determines the output SNR. 

In the past years, Ensemble Interval Histogram (EIH) model 
[7][8] and Auditory Spectrum Based Features (ASBF) [4] are 
two examples that applied auditory based spectral analysis 
models and also took the shape of the filters in the filter-bank 
into consideration. EIH model used a model of the cochlea and 
the hair cell transduction. It consisted of a filter-bank that 
models the frequency selectivity at various points along a 
simulated basilar membrane, and a nonlinear processor for 
converting the filter-bank outputs to neural firing patterns along 
a simulated auditory nerve. ASBF was based on the cochlea 
model of the human auditory systems as well, and was able to 
track the formants. Both approaches had different shapes for 
different filters in the filter-bank. Although these approaches 
offered good performance under noisy environment, they 
significantly changed the normal process of feature extraction, 
and thus the conventional feature enhancement techniques 
developed on the MFCC may not be directly applicable on this 
kind of features. Moreover, they are quite complicated and 
require large number of decisions and computations in the 
feature extraction process. On the other hand, a series of work of 
filter-bank design based on a data-driven approach in order to 
obtain a more discriminative representation of speech features 
has been presented [9]. In this approach, the bandwidths, shapes 
and positions of the filters in the filter-bank can all be tuned and 
optimized according to the criterion of Minimum Classification 
Error (MCE). In this way the filter-bank is well matched to the 
specific task and the relevant speech corpora since it is obtained 
data-driven. Also, this approach makes the front-end feature 
extractor well matched to the back-end classifier since the 
procedure of MCE training is based on minimizing the error for 
the overall recognizer, which includes both the front-end feature 



extractor and the back-end classifier. However, the MCE 
training requires relatively high computation complexity with 
many parameters to be decided all together for a specific task. 
For example, the overall filter-bank needs to be re-trained if the 
back-end classifier structure is slightly modified for a different 
task with a different speech corpus. 

In this paper, we proposed that the shape alone of each filter 
in the Mel-scale filter-bank in MFCC feature extraction can be 
derived data-driven by applying the criterion of principal 
component analysis (PCA). This filter-bank is easy to be 
obtained for a given task and corpus, the improved MFCC 
obtained in this way can be well compatible to many feature 
enhancement techniques previously developed, and the feature 
extraction can be de-coupled from the many parameters in the 
back-end classifier which can be different for different tasks. It 
is shown in this paper the new features obtained using this PCA-
derived filter-bank give comparable performance for clean 
speech and better performance under noisy environment, as 
compared with the conventional MFCC features. Besides, it’s 
also shown that it performs very well when combined with some 
other basic de-noise techniques like Spectral Subtraction. 

The remainder of this paper is organized as follows. Section 
2 describes the proposed approach. Sections 3 and 4 are the 
experiments and discussions. Finally, a brief concluding remark 
is given in Section 5. 

2. THE PROPOSED APPROACH OF PCA-
OPTIMIZED FILTER-BANK 

The central idea of principal component analysis (PCA) is to 
reduce the dimensionality of a data set that consists of a large 
number of interrelated variables, while retaining as much as 
possible of the variation present in the data set [10]. To state 
PCA briefly, if x is an Nx1 random vector, the objective is then 
to find a set of Nx1 orthonormal vectors {wi| 1≤ i ≤k, k≤N} such 
that the inner product of each wi and x,  

                    yi = wi
Tx                       (1)  

has the maximum variance, where yi is a scalar value. The above 
set of vectors {wi} is in fact the eigenvectors of the covariance 
matrix for x corresponding to the largest k eigenvalues. The 
above idea of PCA can be applied in the filter shape 
optimization problem considered here. Each filter in the filter-
bank can be viewed as a process of dimensionality reduction, 
where the signal components within that frequency band are 
weighted and then combined into a single value, whose variation 
is to be maximized. The detailed procedure is stated as follows. 

Let {xk(n), n = 1,2,···,mk} be the random variables 
representing the mk signal components belonging to the k-th 
frequency band to be handled by the k-th filter in the filter-bank, 
where mk is the total number of components in that band, and let 
xk be the vector representation for these random components. 
That is, 

xk=[ xk(1), xk(2),……, xk(mk)]T                                    (2) 
For each training signal of the training database, its spectral 
components corresponding to the k-th filter of the filter-bank can 
be extracted, represented as a vector and then this vector can be 
viewed as a sample of the random vector xk in equation (2). By 
collecting these sample vectors for the random vector xk, the 
covariance matrix cov(xk) can be calculated and then 
diagonalized into Dk, 

cov(xk) = Fk
-1DkFk                                          (3) 

where Fk is the matrix whose column vectors are the 
eigenvectors of cov(xk). The coefficients of the k-th filter are 
then simply the components of the column vector wk of Fk 
corresponding to the largest diagonal element (or eigenvalue) of 
Dk. This process is shown in figure 1. 
With the filter obtained above, apparently the variance of the 
filter output yk = wk

 Txk can be maximized. Furthermore, if the 
additive noise within that frequency band is assumed flat (white), 
the ratio of the variance for the signal to that for the noise (say, 
signal-to-noise variance ratio, which can be viewed as a different 
form of the signal-to-noise ratio (SNR)) can be maximized as 
well, which is also a desired property. This can be briefly shown 
in the following. 
Let xk = sk + nk, where sk and nk are the vector representations of 
the clean signal and noise power spectral components within the 
k-th band, respectively. By assuming sk and nk are uncorrelated, 
the “signal-to-noise variance ratio” for the output of the k-th 
filter wk is, 
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If the noise spectrum within that frequency band is assumed flat 
(white), that is, the covariance of the noise vector nk can be 
assumed as I2

knσ , where 2
knσ  is the variance for each 

component of nk, then in equation (4) the term in the 
denominator is 
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Since in equation (4) the term var(wk
Tnk) is a fixed value 2

knσ  

while the term var(wk
Txk) is maximized respect to wk, the 

“signal-to-noise variance ratio” for the output of the k-th filter 
wk in equation (4) is also maximized accordingly. It should be 
pointed out that what is really desired here is to maximize both 
the signal-to-noise variance ratio for the filter output and the 
variation of this output among the phone classes, but not the 
variation among speakers, channels or different noise types 
because the desired discrimination is in phone classes, not in 
speakers, channels or noise. This will be further discussed later 
on. 

 

 
Figure 1: The process of finding PCA-optimized filter bank 
coefficients 

3. EXPERIMENTAL SETUP 

 The major speech database used in the experiments was the 
NUM-100A digit database provided by the Association for 
Computational Linguistics and Chinese Language Processing at 
Taipei [11]. This database includes 8000 Mandarin digit strings 
produced by 50 males and 50 females. The speech signal was 



recorded under normal laboratory environment at 8 kHz 
sampling rate and encoded with 16bit linear PCM. The database 
consisted of 1000 2, 3, 4, 5, 6, 7-digit strings and 2000 single 
digit utterances. This database was split into 7520 training digit 
strings and 480 testing utterances. Another database tested was 
MAT-2000 with the same encoding condition as NUM-100A, 
and collected through telephone networks in Taiwan. There are a 
total of 12149 training utterances and 500 test utterances in this 
database. The first set of experiments was performed on NUM-
100A, in which a zero-mean white Gaussian noise was added to 
the test utterances at each specified signal to noise ratio. A 32ms 
Hamming window shifted with 10ms steps and a pre-emphasis 
factor of 0.97 were used. Then cepstral coefficients were 
generated through a filter-bank of 23 filters and IDCT, and the 
first 12 coefficients plus the log energy were chosen as the 
feature parameters. The conventionally used triangular filters in 
the filter-bank were applied for the baseline experiments for the 
further comparison. On the other hand, the modified filter-bank 
as shown in Figure 2 is generated using the training utterances 
of NUM-100A database by the PCA technique as described 
previously. The dimension of the baseline MFCC feature vector 
is 39, which include 13 coefficients as mentioned above, its 13 
derivatives and 13 accelerations. We use a total of 16 3-state 
left-to-right sub-word HMM models each with 1, 2, 4, 8, 16 
mixtures per state. The second set of experiments performed on 
MAT-2000 database will be discussed below. From the Figure 2, 
we can see that the shapes of the filters in the filter-bank are not 
only quite different from one another, they are also not always 
triangular. 

 

 
Figure 2: The shape of 23 filters in the filter-bank 

4. EXPERIMENTAL RESULTS 

Table 1 lists the recognition results for the first set of 
experiments on NUM-100A database under various noisy 
conditions with 4 mixtures per state. Each column is for a 
different SNR condition, and each row is the results for a 
processing approach. The first two rows (1)(2) compare the 
proposed approach with the MFCC baseline. It can be found 
from these two rows that for clean speech, the proposed 
approach was exactly the same, without any degradation, as 
compared to the MFCC baseline. However, in noisy speech the 
proposed approach clearly outperformed the MFCC baseline and 
the improvements with respect to MFCC baseline became more 

significant at worse noisy conditions. The next two rows (3)(4) 
compare the results when the spectral subtraction (SS) was 
added to the MFCC baseline and the proposed approach. It can 
be found that in this case the proposed approach was better than 
MFCC even for the clean speech case, and again offered more 
improvements at worse noisy conditions. In the next two rows 
(5)(6) the cepstral mean subtraction (CMS) was applied. In this 
case the proposed approach was slightly worse than MFCC, 
although very close. In the last two rows (7)(8) both cepstral 
mean subtraction (CMS) and spectral subtraction (SS) were 
applied. Again the proposed approach is better, although only 
slightly. When comparing the results in each column of Table 1, 
it can be found that the proposed approach plus the spectral 
subtraction (SS) provided the best results for clean speech, 30dB 
and 20dB, while for 10dB the proposed approach alone already 
gave the best result, although the addition of spectral subtraction 
is only slightly worse. Apparently the proposed approach is 
quite additive with the spectral subtraction. One explanation for 
it is that the spectral subtraction performs well when the noise is 
not too serious, while it can’t help too much for serious noisy 
conditions. The proposed approach, on the other hand, did well 
for serious noise conditions too, and thus the two approaches 
thus complement each other. The cepstral mean subtraction 
(CMS) approach, on the other hand, didn’t seem to work very 
well here in this set of experiments, probably because it is 
primarily for channel bias removal but the NUM-100A database 
didn’t include channel effect yet. Also, the proposed approach 
performed very well especially at worse noisy conditions and 
equally well for clean speech. This is in good agreement with the 
discussions made previously in equations (4)(5), i.e., the signal-
to-noise variance ratio has been maximized for each filter output. 
The results in Table 1 are for 4 mixtures per state. In fact, the 
similar trend can be observed in all different numbers of 
mixtures from 1 to 16. Figures 3 and 4 show the accuracy 
comparison between the proposed approach and the MFCC 
baseline, used alone and together with spectral subtraction 
respectively, i.e., the situation of rows (1)(2)(3)(4) in Table 1, 
but with different numbers of mixtures. The solid lines are for 
the proposed approach and the dotted lines the MFCC baseline. 
These figures verify the above statement for different mixture 
numbers. 

SNR clean  30dB 20dB 10dB
MFCC baseline (1) 96.20 88.08 73.86 34.20
PCA approach (2)  96.20 89.69 78.12 46.23

MFCC baseline, SS (3) 96.26 91.25 79.04 34.83
PCA approach, SS (4) 96.43 92.29 81.52 45.08

MFCC baseline, CMS (5) 95.22 89.35 72.54 35.92
PCA approach, CMS (6) 94.93 90.04 72.71 33.79

MFCC baseline,CMS,SS (7) 95.16 91.54 78.99 39.32
PCA approach,CMS,SS (8) 95.45 92.06 79.50 39.84
Table 1: Recognition Accuracy under various noisy conditions 
 

To check if the proposed features is really more robust with 
additive noise, the average Euclidean distance was calculated 
between the clean feature vector x(n) and noisy speech feature 
vector ( )nx~ : 

( ) ( )( ) ( ) ( )( )∑ −−=
n

T nnnn
N

D xxxx ~~1
,                     (6) 

where the average is performed over all data frames n tested in 
the above experiments. The average distance results are listed in  



 
Figure 3: Proposed approach v.s. MFCC baseline for 

different numbers of mixtures 

 

 
Figure 4: Proposed approach v.s. MFCC baseline under Spectral 
Subtraction for different numbers of mixtures 
 
Table 2. It is clear from the table that the distance for the 
proposed approach is always smaller than the corresponding 
MFCC baseline, regardless of used alone or with spectral 
subtraction. It can also be found that the average distance is 
significant larger for worse noisy conditions, but the distance 
reduction by the proposed approach is also slightly more for 
those cases. Also, the spectral subtraction actually reasonably 
reduced the average distance in all cases. The next set of 
experiments was conducted on the MAT-2000 database, in 
which all speech utterances were collected via telephones, thus 
including the channel effect. Two tests were performed, the first 
used the filter-bank coefficients obtained with the NUM-100A 
database used previously, which were for clean speech, and the 
second used the MAT2000 database training data to generate the 
filter-bank coefficients. The results are shown in Table 3. The 
baseline test used the conventional MFCC features. In both 
cases the proposed approach gave slightly better results. The 
improvements were not significant, since there was essentially 
no additive noise here. However, the results of the first test were 
slightly better than the second. This is probably because in the 
second test PCA was performed on the speech data collected 
from many different speakers via many different telephone 
channels, thus the channel variation was mixed up with the 
variation among phone classes and jointly maximized when 
defining the filter-bank shape. Thus the channel variation 
somehow offset the discrimination among phone classes. 

Moreover, since in the second row of Table 3 the filter-bank is 
obtained by the clean speech database, while the test data is 
telephone speech, there is a mismatch between them and thus the 
improvements is limited. It is expected that a proper 
combination of the PCA approach and some other approaches 
such as temporal filtering may offer better results. 

SNR 30dB 20dB 10dB 
MFCC baseline 1.4032 2.7495 4.6993 
PCA approach 1.3785 2.7174 4.6635 

MFCC baseline+SS 1.2321 2.4751 4.3645 
PCA approach +SS 1.1970 2.4255 4.3078 

Table 2 : Average distance between the noisy speech and the 
clean speech 

MFCC baseline 72.36 
PCA approach with filter-bank by 

NUM-100A (without channel effects) 73.23 

PCA approach with filter-bank by MAT-
2000  (with channel effects) 72.53 

Table 3 : Recognition accuracy on MAT2000  

5. CONCLUSION 

In this paper, the conventional MFCC feature is improved by 
PCA-optimized filter-bank. The results in the experiments show 
that the proposed features are robust to additive noise for speech 
recognition, provide exactly the same performance for clean 
speech, and are quite additive with some robustness techniques 
such as the spectral subtraction. This is because the PCA-
optimized filter-bank maximizes both the signal-to-noise 
variance ratio and the variation of the features. 
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