
BRIDGING THE GAP BETWEEN MIXED-INITIATIVE DIALOGS AND
REUSABLE SUB-DIALOGS

Susanne Kronenberg, Peter Regel-Brietzman

Speech Understanding Systems
DaimlerChrysler AG

ABSTRACT

For easing the developing process for dialog sys-
tems it is desired that reusable dialog compo-
nents provide pre-packaged functionality ’out-
of-the-box’ that enables developers to quickly
build applications by providing standard de-
fault settings and behavior [6]. Additionally,
human-computer interaction should become more
human-like in that mixed-initiative dialogs are
supported. Mixed-initiative interaction requires
the system to react to user initiated applica-
tion specific commands whereby reusable di-
alog components have to be application inde-
pendent to be used in different settings. This
article presents a dialog mechanism, so called
meta-dialog, which is responsible for the control
flow between reusable sub-dialogs and mixed-
initiative dialogs.

1. INTRODUCTION

Recently, the use of speech based dialog systems
has became more and more widespread in most
application areas, e.g. call-center applications.
By now for each specific application, e.g. cin-
ema preview or online banking, different dialog-
systems are being developed. However, the fun-
damental dialog strategies are often very similar
and only the application specific parts of the sys-
tems are different. In order to ease the developing
process, dialog systems should be implemented

by reusing similar parts of the system for differ-
ent applications and only accommodating those
parts of the system, which are application spe-
cific. This can be realized based on reusable sub-
dialogs. These reusable sub-dialogs are compo-
nents which are required not to change signifi-
cantly between application or vendor. Therefore,
for these components, both component-specific
configurable parameters and the return semantics
have to be specified which in addition have to be
application independent.

On top of that, it is desirable for human-
computer interaction to become more human-like.
Many researchers have noted that the absence of
mixed-initiative gives rise to two problems with
expert systems: They do not allow users to par-
ticipate in the reasoning process, or to ask those
questions they want to have answered [1], [4].
Accordingly, mixed-initiative dialogs have to be
integrated to achieve advanced human-computer
interaction. In mixed-initiative dialogs the user
is free to determine the direction of the dialog
flow at each step. Moreover, in cases, in which
the user takes the initiative of the dialog the pre-
defined dialog flow is changed by the user be-
cause only in those cases the user’s initiative is
necessary. These changes can be assumed to be
application specific in order to establish human-
computer cooperation in such a way that the sys-
tem is able to understand the user’s utterances1.

1Otherwise, these user initiated utterances will be



This implies that the dialog flow of reusable sub-
dialogs can also be changed by application spe-
cific commands. But this fact contradicts the re-
quirement as stated above, namely that reusable
sub-dialogs are not application specific.

This article presents a dialog mechanism, so
called meta-dialog, which will fill the gap be-
tween the requirements of reusable sub-dialogs
and mixed-initiative dialogs. Therefore, the meta-
dialog of an application changes application in-
dependent components into application specific
ones.

2. META-DIALOGS

2.1. Mixed-Initiative Dialogs versus Reusable
Sub-Dialogs

The aim for designing dialog systems by using
reusable sub-dialogs is that the main part of the
dialog will be built based on these components
and only the application specific parts have to be
handcrafted. The application specific part of the
dialog consists of the dialog flow, i.e. the order, in
which the components will be processed, the ap-
plication specific parameters, and the application
specific vocabulary. This implies that the input of
a reusable sub-dialog will be application specific
and the result of a reusable sub-dialog has to be in-
terpreted according to the application specific re-
quirements to maintain the predefined dialog flow.

Moreover, reusable sub-dialogs have to be
able to understand application specific com-
mands. For example, a browsable selection list
allows the user to hear items in a list in sequence
and navigate through this list. Any item may
be selected at any time by saying the appropri-
ate grammar entry. Consequently, specific com-
mands are used for selecting a list entry, which
corresponds to the different domains. In an on-
line banking application a money transaction can
be selected by, e.g. ‘transferring,’ whereas in a
news reader application it is more likely that a

treated by the error handling component of the system.

topic will be selected by ‘reading.’ Accordingly,
the application dialogs have to transfer a reusable
sub-dialog, which is application independent into
an application specific dialog, which shows the re-
actions, which are required in this special setting.

In [7] it is shown that control shifts do not al-
ways correspond to task boundaries. For example,
in a browsable selection list the user can use ap-
plication specific commands different to the ones
for selecting a list item or for navigating through
a list. Mostly, this control shift will lead to a topic
shift, i.e. the user initiates a sub-dialog different
to that of a browsable selection list. Therefore,
by using such commands the user takes control
over the dialog flow and will force the system to
change the dialog flow, which in turn can imply
that the special sub-dialog will be terminated.

But in [8] it is shown that changes of control
can occur without a topic shift. For guaranteeing
that not every control shift leads to a termination
of a sub-dialog it is necessary that application spe-
cific commands have to be known to the reusable
sub-dialogs and the dialog flow has to be changed,
if necessary in accordance to these commands.

As reusable dialog components are required
to be application independent these changes in
the dialog flow cannot be handled by these com-
ponents themselves. These changes will be de-
termined by the overall dialog control, so called
meta-dialog. The purpose of the meta-dialog be-
longing to an application dialog is twofold:

1. First, the meta dialog has access to the lex-
icon, which contains the application vocab-
ulary. If the application task has an hi-
erarchical structure, the lexicon has to re-
flect this structure. For instance, in a news
reader application a news item can be se-
lected by the user by naming first the news
category, i.e. ‘politics,‘ ‘sports,‘ etc. and
then selecting a special topic like ’tennis.’
Furthermore, the user can directly ask for
tennis news. Accordingly, the lexicon has
to be structured in such a way that ’tennis’
is subsumed by ’sports,’ which means that



the system can directly access this topic by
knowing that ’tennis’ is a special topic of
the ’sports’ category. Otherwise, not ev-
ery application specific command has to be
known by each reusable sub-dialog. A con-
firmation dialog should not have access to
every lexicon entry in order to avoid over-
generalizations, by which also misrecog-
nized utterances will always lead to a topic
shift. Therefore, the meta-dialog guaran-
tees that every sub-dialog has access only
to that part of the lexicon, which is neces-
sary for supporting mixed-initiative.

2. Second, the meta-dialog controls the dialog
flow. Every application dialog has a prede-
fined dialog flow which is followed in case
no initiative is taken by the user and then
control over the dialog is left to the sys-
tem. If the result of a reusable dialog in-
dicates that the control is taken by the user
the meta-dialog will change the dialog flow
according to the user’s initiative.

2.2. The Processing Strategy

The presented processing strategy for meta-
dialogs is based on two theories of initiative
strategies. The adaptive model as introduced in
[2] merges discourse structure and accounts of
initiative in that initiative is held by the discourse
segment initiator. Each discourse segment has a
purpose and the purpose of each segment con-
tributes to the purpose of its parents. The hier-
archy of segment purposes makes up the inten-
tional structure. Intentional structure is the key to
understanding what the discourse is about and ex-
plains its coherency. In [5] each discourse event
is explained as either: (i) starting a new segment
whose purpose contributes to the current purpose,
(ii) continuing the current segment by contribut-
ing to the current purpose, or (iii) completing the
current purpose. In this strategy, called Colla-
gen, each participant maintains a mental model,
called discourse state, of the status of the collab-

orative tasks and the conversation about them. A
discourse state consists of a stack of goals, called
the focus stack, and a plan tree for each goal on
the stack. The top goal on the focus stack is the
’current purpose’ of the discourse.

The underlying concepts of both theories are
used to model mixed-initiativess in combination
with reusable sub-dialogs. Participants in a col-
laboration derive benefit by polling their talents
and resources to achieve common goals. In a task
oriented dialog the common goal is to complete a
special task. For achieving this goal several task
parametes must be set. Accordingly, a successful
dialog will be one, in which all task parameters
are set. Furthermore, by considering the reusable
sub-dialogs as discourse segments it is required
for initiatives to be able to change during process-
ing of a discourse segment different to the theo-
retical frameworks introduced above.

As mentioned in (2.1) the application dialog
is augmented with a predefined dialog flow, i.e. a
predefined sequence, in which the task parameters
will be processed. This sequence of task parame-
ters can be considered as the focus stack. In case
the predefined dialog flow is followed the focus
stack will be sequentially processed and the top
of the focus stack contains the currently consid-
ered task parameter. In case initiative is taken by
the user and the dialog flow is changed, the task
parameter corresponding to the user command is
considered as the currently considered one, i.e.
the current top of the stack. Every task parameter
is associated to a discourse segment, i.e. the part
of the application dialog, in which this parameter
will be processed. For reaching the entire dialog
goal each parameter has to be set. Thereby, each
discourse segment contributes its purpose, i.e. the
corresponding task parameter, to the purpose of
its parents, i.e. the discourse corresponding to
the already processed discourse parameters. If the
predefined dialog flow is followed, this contribu-
tion will lead to a completion of the the current
dialog goal. In case the predefined dialog flow
is not followed, i.e. control is taken by the user,



this contribution can either complete or correct
the current dialog goal. Completion of the dia-
log goal is given if the predefined dialog flow is
changed but a task parameter is processed which
has not been considered before. Correction of the
dialog is given, if the predefined dialog flow is
changed but a task parameter is processed which
has already been considered. Accordingly, as the
meta-dialog is responsible for keeping track of
the dialog flow the meta-dialog has to determine
which kind of contribution to the current dialog is
given by a new incoming task parameter.

This decision process is based on two dis-
course relations, called complete and correct (cf.
[3]), which enable the system to process both
kinds of contributions. In case a task parameter is
considered for the first time the complete relation
will add the information given by this parameter
to the discourse purpose. The dialog will be con-
tinued by the next task parameter – the new top of
the focus stack – which has not yet been consid-
ered. If a task parameter has already been consid-
ered and is visited for the second time the correct
relation will update this task parameter. The dia-
log will be continued by the next task parameter
on the focus stack which has not yet been con-
sidered. Based on both discourse relations each
task parameter is processed, whereby both cases,
i.e. initiative taken by the user or the system, are
covered by this discourse framework.

Accordingly, the presented initiative strategy
is based on tracking discourse structure. The
focus stack reflects the predefined dialog flow
whereby focus is given to the top element of the
stack, i.e. in cases, in which control is left to sys-
tem. In cases where initiative is taken by the user,
the new top of the focus stack corresponds to the
currently considered task parameter.

3. CONCLUSION

This article presents a dialog framework, called
meta-dialog, which integrates the requirements
of reusable sub-dialogs and mixed-initiative di-

alogs into one processing strategy. This process-
ing strategy is based on a focus stack and on track-
ing the discourse structure. Whereby the focus
stack reflects the dialog flow. Two discourse re-
lations are responsible for maintaining the dis-
course structure, which reflects the control flow
between user and system in order to achieve the
final dialog goal.

4. REFERENCES

[1] David M. Frohlich and Paul Luff. Conversational
resources for situated action. In Proc. Annual
Meeting of the Computer Human Interaction of the
ACM, 1989.

[2] P. Heeman and S. Strayer. Adaptive modeling of
dialogue initiative. In Proceedings of the NAACL
Workshop on Adaption in Dialogue Systems, pages
79–80, Pittsburgh, USA, June 2001.

[3] Susanne Kronenberg. Cooperation In Human
Computer Communication. PhD thesis, Bielefeld
University, 2001.

[4] Martha Pollak, Julia Hirschberg, and Bonnie Web-
ber. User participation in the reasoning process of
expert systems. AAAI82, 1982.

[5] Charles Rich, Candace L. Sidner, and Neal Lesh.
Collagen: Applying collaborative discourse the-
ory to human-computer interaction. AI Magazine,
Special Issue on Intelligent User Interface, 2001.

[6] W3C. Reusable Dialog Requirements
for Voice Markup Language, April 2000.
http://www.w3.org/TR/reusable-dialog-reqs.

[7] Marilyn Walker and Steve Whittaker. Mixed-
initiative in dialogue: An investigation into dis-
course segmentation. In Proceedings of the 28th
Annual Meeting of the Association of Computa-
tional Linguistics, pages 70–78, 1990.

[8] Steve Whittaker and Phil Stenton. Cues and con-
trol in expert client dialogues. In Proceedings
of the 26th Annual Meeting of the Association of
Computational Linguistics, pages 123–130, 1988.


