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ABSTRACT

In this paper, we address the issue of speech recognition in
the presence of interfering signals, in cases where the sig-
nals corrupting the speech are recorded in separate chan-
nels. We propose to combine a trivial form of filtering with
MCDCN, a Multi-channel version of the Codebook Depen-
dent Cepstral Normalization, where the cepstra of the noise
are estimated from the reference signals. We report on recog-
nition experiments in a car where the speech signal is cor-
rupted by radio talks or CD music played the car speakers.
Our approach allows relative word error rate reductions in
the range of 70-90% compared to a no-compensation base-
line, at a relatively low computational cost.

1. INTRODUCTION

Robustness in the presence of noise, and more generally
in the presence of interfering signals, is a crucial issue for
speech recognition to work in a real-world environment. In
cases where the signal interfering with the speech is sta-
tionary and where its characteristics are known in advance,
robustness issues can, to a certain extent, be addressed dur-
ing the training of the speech recognition system. However,
in most applications, the signal corrupting the speech is nei-
ther known in advance nor stationary (for example, music
or speech from competing speakers). Such cases cannot be
handled by devising special training schemes and they re-
quire the use of on-line adaptation algorithms. In this paper,
we address the case where recordings of the interfering sig-
nals are available in separate channels. These signals are
called the reference signals. This occurs for example when
the speech signal is corrupted by the sound emitted by a
radio or a CD player (the reference signals are recorded at
the outputs of the radio or CD player), in telephony appli-
cations where the speech prompt synthesized by the speech
server interferes with the speech of the user (the reference
signal is the recording of the prompt), or, when the speech
signal is mixed with the speech of competing speakers (the
reference signals are recorded from the microphones of the

competing speakers). The general problem of removing un-
wanted signals from a desired signal by using reference sig-
nals is typically addressed with adaptive decorrelation filter-
ing techniques [1]. In decorrelation filtering, the corrupted
signal and the reference signal are assumed to be observed
at the output of a linear system modeling the cross-coupling
between the desired signal and the interfering signal. This
linear system is assumed to be such that there is no leak-
age of the desired signal into the reference signal. Further
assuming that the desired and interfering signal are uncor-
related, the linear system can be estimated unambiguously
so that the desired signal can be recovered via inverse filter-
ing. However adaptive decorrelation filtering suffers from
some limitations in the context of speech recognition, es-
pecially in the context of embedded applications running
with limited computational resources: (i) it performs in the
waveform domain, on a sample basis, thus leading to a high
computation rate, (ii) it involves an iterative scheme, hence
some delay may occur before it converges towards an ac-
curate estimate of the coupling system, especially in a non-
stationary environment, (iii) its performance depends on the
modeling accuracy of the coupling system (the length of the
decorrelating filters needs to be hypothesized). In this pa-
per, we present an approach especially designed to deal with
a real time application constrained to run with low compu-
tational ressources. An inexpensive - and inaccurate - form
of adaptive filtering, assuming a single-tap delay filter, is
used to roughly align and scale the reference signal with
the noisy speech. The aligned and scaled reference signal
is then removed from the noisy speech in the cepstral do-
main by using our new algorithm derived from CDCN [3]
and called MCDCN: Multi-channel Codebook Dependent
Cepstral Normalization. As will be shown in this paper,
MCDCN is advantageous as: (i) it allows to compensate
for the loose modeling of the coupling system between the
speech and the interfering signal by taking advantage of our
knowledge of the clean speech distribution in the cepstral
domain, (ii) it does so through the use of a codebook, the
size of which can be adjusted to meet the desired balance
between performance and computational complexity, (iii) it



performs on a frame basis, i.e. at a low computation rate
compared to waveform techniques (every 165 samples with
our 15ms system on 11kHz data, instead of every sample),
(iv) it does not involve any iterative estimation scheme, thus
further enabling a real time use.
In section 2, we present our multi-channel version of CDCN
and in section 3 we give an overview of our noise removal
scheme, including the preliminary alignment and scaling
steps used in our experiments. In section 4, we report on
speech recognition experiments in a car with either radio
talks or CD music played by the car speakers at different
sound levels.

2. MCDCN

MCDCN refers to a multi-channel version of CDCN that al-
lows to compensate for non-stationary noise in cases where
the source(s) of noise are recorded separately. In the stan-
dard CDCN framework, the desired speech signal is as-
sumed to be first passed through a linear filter, which models
the effect of the channel, and then corrupted with noise. In
this paper, only the cepstral distortion caused by the noise is
considered: the effect of the channel is assumed to be com-
pensated for by the preliminary alignment and scaling ex-
plained in section 3. Thus, assuming additive uncorrelated
noise, the relation between the power spectral densities of
the clean speech,
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Note that equation 1 suggests that, given the corrupted speech
and the noise observed in the reference channel, the spec-
trum of the clean speech could be recovered with spectral
substraction. However our preliminary experiments tend to
indicate that this would require to identify the cross-coupling
system between the noise and the clean speech, so that the
noise actually corrupting the speech can be estimated by
filtering the noise in the reference channel. In [2], adap-
tive lattice-ladder filters are used to very accurately align
the reference signal with the noise present in the corrupted
speech. The aligned reference signal is then removed from
the noisy speech by using a spectral substraction technique.
The MCDCN technique presented in this paper allows to
avoid the cost of an accurate alignment: the imprecision of
our estimate of the corrupting noise, as well as the impreci-
sion of the additive noise model, is compensated for by tak-
ing advantage of our a priori knowledge of the clean speech
distribution in the cepstral domain. Besides, MCDCN does
not require any empirical tuning whereas spectral substrac-
tion requires to define an adequate flooring of the cleaned
spectrum. The relation between the cepstral vectors of the
clean speech � ����� , the noisy speech � ����� and the noise � �����

can be expressed as [3]:

� ������� � �������! �� � �����#" � ������� (2)

with
 

a non linear function of both the clean speech and the
noise. Assuming MFCC vectors computed with a bank of
Mel-filters followed by a Discrete Cosine Transform:
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(3)

where
%('*)

and
%('*) B
E

refer respectively to the Discrete
Cosine Transform and to its inverse. Whereas in standard
CDCN, the noise is estimated via an EM algorithm, we pro-
pose in MCDCN to compute the cepstra � ����� of the noise
from the reference signal which is assumed to be recorded
in a separate channel. For lack of knowing the cepstra � �����
of the clean speech, the function

 
, like in standard CDCN,

is approximated with its expected value over � , given � �����
and � ����� :
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To simplify the computation, the function

 J� � �����#" � �����K� is
assumed to be a piece-wise constant function of � ����� . There-
fore, assuming a codebook

' �0O �QPSRUT
V �WOT.X E of � 8 cepstral
vectors describing the acoustic space of the clean speech,
the noise correction term is computed as:
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Assuming the Gaussian distribution ` � � �����\acb T "ed�fT � to
model the distribution of the clean speech � ����� given the
codeword

R T
, we approximate the distribution of the noisy

speech � ����� , given
R T

, with the Gaussian distribution ` � � �����agb
T�2h ���RiTK" � �����K�j"gd�fT � . The posterior probability of the
codeword

RUT
, given � ����� and � ����� , is thus computed as:
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where l T denotes the a priori probability of the codewordR T
. In [4], CDCN is used with a more refined estimation of

the distribution of the noisy speech, inspired by the model
combination framework. An estimate of the clean speechF� ����� is computed as:

F� ������� � ������� F �� � �����#" � �����K� (5)

The computational cost of MCDCN is a linear function of
the size � 8 of the codebook. The codebook can thus be
designed so as to find the desired balance between perfor-
mance and computational complexity



3. OVERVIEW OF THE SYSTEM

The reference waveforms are first aligned (assuming a single-
tap delay filter) and scaled against the noisy speech wave-
form. In our experiments, a speaker is talking in a car while
the radio or the CD player are on. A microphone located
on the visor of the car captures the speech corrupted by the
signal emitted by the car speakers. The radio is a mono
source of noise: its output is captured in one reference chan-
nel. The CD player is a stereo source of noise: the left and
right outputs of the CD player are captured in two distinct
channels. In the case of the mono source, the relative de-
lay between the waveform in the reference channel and the
waveform of the corrupted speech is estimated by detect-
ing the maximum of the cross-correlation function between
the two waveforms. The scaling factor between the ampli-
tudes of the two waveforms is estimated by computing a
mean value over segments of non speech samples from each
waveform, and by taking the ratio of the two means. The
estimated scaling factor is used to set the two input wave-
forms to approximately the same amplitude level. This pre-
liminary step represents a simple form of filtering ; a more
refined scheme like adaptive decorrelation filtering for ex-
ample could be used instead, but at a much higher cost. In
the stereo case, the signals from the left and right outputs
of the CD player are aligned in turn against the waveform
of the noisy speech, using the same cross-correlation tech-
nique as in the mono case. The left and right waveforms are
then summed up so that even in the stereo case, only one
reference signal is actually used when applying MCDCN.
This reference signal is scaled against the noisy speech fol-
lowing the same technique as in the mono case. After the
input waveforms have been aligned and scaled, cepstra are
computed for each channel. The cepstra in the reference
channel and in the noisy speech channel are used as esti-
mates of respectively o]p�q�r and s�p�q�r in equations 4 and 5.
Speech recognition is performed on the estimate tu p�q�r of the
cepstra of the clean speech obtained from equation 5.

4. EXPERIMENTS AND RESULTS

To collect the evaluation data, 20 subjects (10 males and 10
females) were given 50 sentences consisting of digit strings
or command phrases. Each subject was asked to repeat the
50 sentences in a stationary car with the speakers playing
either radio news or CD music (opera, DJ or jazz music)
at 3 signal power levels: 60 dB, 70 dB and 80 dB in aver-
age, as measured by an SPL meter between the front seats at
about lap level. The speech corrupted by the sound emitted
by the car speakers was recorded with an AKG Q400 mi-
crophone located on the visor. Simultaneously, the signals
at either the radio output or at the left and right outputs of
the CD player were captured in separate channels. All the

data were recorded at 22kHz and downsampled to 11kHz.
In the experiments presented here, the reference and speech
channels are aligned by detecting the maximum of their
cross-correlation function for shifts of up to 90ms. They are
scaled by estimating the mean of the signal in each channel
during the first 450ms of the recording (we assumed that
there is no speech during the first 450ms of each sentence).
Speech recognition is performed with a reduced-size sys-
tem especially designed for portable devices or automotive
applications [5]. It consists of speaker-independent acous-
tic models (156 subphones covering the phonetics of En-
glish) with about 9,000 context-dependent gaussians (tri-
phone contexts tied by using a decision tree), trained on a
few hundred hours of speech (about half of these training
data has either digitally added car noise, or was recorded in
a moving car at 30 and 60 mph). The front end of the system
uses 39 dimension cepstra 1 (12 MFCC + the energy + delta
and delta-delta coefficients) from 15ms frames. MCDCN
was applied by using codebooks of either 2, 4, 8, 16, 32, 64,
128 or 256 codewords. Each codebook was estimated by
quantizing about 3,000 sentences of clean speech (recorded
with the same microphone as the evaluation data) by assum-
ing diagonal covariance matrices tied across all codewords.
All codewords were assigned equal priors.
Table 1 shows the average word error rates (WER) obtained
by decoding the noisy speech without using any compen-
sation and by compensating with MCDCN with codebooks
of size ranging from 2 to 256 codewords. The average is
taken over all the speakers and all the interfering signals
(radio and all music styles) at each of the three sound lev-
els. With as few as 2 codewords, MCDCN allows a relative
WER reduction of about 75% with the 60 and 70dB inter-
ferences, and 65% with the 80dB interferences. The best
performance at 60 dB corresponds to an 82% WER reduc-
tion and it necessitates codebooks of at least 8 codewords.
The best performance at 70 dB and 80dB corresponds to
WER reductions of respectively 87% and 76% with code-
books of at least 32 codewords. Our experiments tend to
indicate that the minimal number of codewords required to
reach an optimal performance is in relation with the power
level of the interfering noise: the louder the noise, the big-
ger the codebook needs to be. Our interpretation is that
the approximation used in the CDCN framework, accord-
ing to which v�p u p�q�r#w�o]p�q�r�r is a piece-wise constant function
of u p�q�r , holds better at low levels of noise2. The histograms
on figures 1 show the WER when the interfering signal is a)
the opera, b) the DJ music, c) the jazz music and d) the radio
news talk. The most confusing interference for the speech
recognition system is the competing speech from the radio
speaker, and then the DJ kind of music (note that the DJ

1cepstra of dimension 24 are used to apply the DCT in equation 3.
2Actually, it can be verified that, for a given x0yZz�{ , if |K}�~_y.z�{�| �9|_}��iyZz�{�|

then |J�i�#����������� ���K��������i������� | �9|=�i������������� �7�������.��i������� | .



tracks consisted of mainly rap music, i.e. somehow again a
competing speech). The effect of the radio however is bet-
ter compensated than the effect of the DJ music, possibly
because the radio is a mono source and our simple align-
ment+scaling scheme can better approximate the channel
effect than with a stereo source. In our experiments, the de-

60dB 70dB 80dB
no compensation 6.1 23.8 44.5�
� = 2 1.5 5.5 15.6� � = 4 1.2 4.5 13.9�
� = 8 1.1 4.1 12.8�
� = 16 1.2 3.3 12.0� � = 32 1.2 3.0 10.8�
� = 64 1.1 3.0 10.8� � = 128 1.0 3.0 10.7�
� = 256 1.2 3.0 11.5

Table 1. Average WER over all speakers and interfering
signals, for interfering signals at power level 60, 70 and
80dB, and for codebooks of various sizes

lays between the noisy speech waveform and the reference
waveforms were found to be in the range 5 to 15 ms. We
tried to alleviate the possible impact of mis-alignments by
applying, within each channel, the cepstral averaging tech-
nique presented in [6]: each 15ms cepstrum is obtained by
averaging 3 cepstra computed with 5ms shifts. It resulted in
about 10% relative improvement at the lowest power level
(0.9% versus 1.0%), but it hurt the accuracy at the loudest
levels. This is consistent with the fact that mis-alignments
are more likely to occur when the amount of interfering sig-
nal in the corrupted speech is small.

5. CONCLUSION

A Multi-channel version of CDCN was proposed to com-
pensate for the effect of interfering signals during speech
recognition by using reference signals. Whereas adaptive
filtering techniques focus on estimating the coupling sys-
tem between the unwanted and desired signals, MCDCN
approximates the effect of the unwanted signals in the cep-
stral space by taking advantage of our a priori knowledge of
the clean speech distribution. As a result, it is computation-
ally attractive compared to approaches that require adaptive
filtering. In our experiments of ambient music removal in a
car, word error rate reductions in the range of 70-90% were
obtained.
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