
MULTIMODAL BROWSING

Giuseppe Caccia, Angelo Cicchitto, Rosa Lancini

CEFRIEL-Politecnico di Milano Via Fucini,2 20133 Milan – ITALY
Phone: +39.02.23954.209 - mailto: rosa@cefriel.it

ABSTRACT

With the increasing development of devices such as personal
computers, WAP enabled wireless telephones and personal
digital assistants connected to the World Wide Web, end users
feel the need to browse the Internet through multiple modalities.
We intend to investigate on how to create a user interface and a
service distribution platform granting the user access to the
Internet through standard I/O modalities and voice
simultaneously.

1. ACCESS TO THE WORLD WIDE
INTRODUCTION

Web is mainly achieved through personal computers, such as
desktops and notebooks. A PC enables the user to navigate the
Internet through visual browsers, which present output
information on a monitor and receive input commands from
keyboard or mouse. It is now possible to search for information
on Internet through wireless telephones devices that support
Wireless Application Protocol (WAP) browsers, equipped with
a small display. On such devices output is presented to the user
on the small display, and input commands are given by pressing
the dial tone keypad.
There are situations in which it would be easier to access an
Internet browser through voice commands and receive an audio
description of the browsed page content [6, 7] keeping enabled
the standard I/O modalities (display and keyboard/keypad). This
leads us to the need of a device dependent browser supporting
multiple I/O modalities, now on referred to as Multimodal
Voice Browser. This approach to Internet browsing seems
useful in the following situations.

• Users with physical disabilities might find it much
easier to access a browser with voice commands and
be guided by an audio assistant.

• Using a small keypad on a cellular phone might be
very frustrating. It seems easier to give voice
commands to a WAP browser rather than pushing
long sequences of buttons on a keypad. Also users not
able to freely use their hands, perhaps drivers, would
find it much more comfortable to keep their hands
busy with driving and navigate the browser through
voice.

• Even on a personal computer equipped with
headphones and microphone a multimodal browser
would have some great features. Think of an e-

commerce site giving an audio assistant to the
customer, or the possibility to skip frequent operations
like checking for new mail, while it would be easier to
give an appropriate voice command.

2. MULTIMODAL VOICE BROWSING

Multimodal access has been formally defined by W3C's Voice
Browsing Working Group [1] as a combination of one or more
speech modes (speech recognition, speech synthesis, prerecorded
speech) with one or more standard I/O modes (dtmf, keyboard,
small screen pointing device, other). It is clear that the type of
deployable application is strongly device dependent.
Apart from the system architecture every speech application
must be equipped with a Text To Speech (TTS) synthesizer and
an Automatic Speech Recognizer (ASR) in order to implement
voice interaction with the user (Figure 1).
A TTS synthesizer is a software package that accepts text strings
as input and outputs the correspondent vocal message. An ASR
is responsible for the inverse procedure accomplished by the
TTS. It recognizes messages spoken by the user matching the
extracted sound with a series of phonems from a defined
grammar.

Figure 1. ASR and TTS interface.

3. SYSTEM ARCHITECTURES

A multimodal platform is obviously a distributed architecture,
delivering the information stored on a server to a proper client.
We must then take in consideration the following topics:

• Markup Language for the data and presentation logic;
• Client-Server architecture;
• TTS and ASR implementation.

3.1. Markup Language

There are several possible approaches for data and presentation
logic.
A first possible approach might be to create a specific markup
language [8,5], perhaps an XML based language, to handle both



the data logic and the presentation logic, supporting multimodal
I/O. This is the direction encouraged by W3C. This solution
seems very robust but is hard to implement. In fact, towards this
architecture, every HTML document should be rewritten in the
new Markup Language, or at least be dynamically generated by
a proper gateway. Further, such a solution needs a specific
browser in order to properly parse the multimodal document.
Another possible solution is to associate a VoiceXML [3]
document to the HTML document to be rendered as multimodal.
The corresponding VoiceXML document may be specifically
created by an author or dynamically created by a proper gateway,
which first analyzes the HTML content [4].

3.2. Client-Server

The client architecture is strongly device dependent. In the case
of multimodal browsing through PC the client will certainly hold
the multimodal browser. According to the chosen markup
language the browser may vary:

• if we choose to develop a brand new language we must
also develop a corresponding browser supporting both
visual and aural I/O modalities (Figure 2);

• if we choose to associate a VoiceXML document
(.vxml) to each HTML document, we may use the
current Internet browsers (Explorer©, Navigator©,
Opera©, ...) to access the .html documents and
implement a specific browser to access the .vxml
documents (perhaps via Java applet) (Figure 3).

Figure 2. Client-server architecture with a Multimodal
Markup Language.

Figure 3. Client-server architecture with HTML and
VXML.

In the case of multimodal browsing through a WAP phone, it
seems almost impossible to implement a new browser on the
device. It is much more reasonable to use the WAP browser for
standard I/O modality, and open a vocal channel with the server
for voice interaction.
The server is responsible of holding the documents being
accessed by the client. Depending on the system architecture it
is also responsible of the business logic, properly behaving to
particular events. Perhaps it may store collected data from forms
or contact other remote servers. As for WAP phones interaction,
the server may also push information (WML documents or
voice) towards the end user device.

3.3. TTS & ASR implementation

In a client-server architecture there are two possible
implementation choices for TTS and ASR:

• a first choice is to leave TTS and ASR on the server in
order to deploy a strongly device independent service;

• a second choice is to embed TTS and ASR directly
inside the browser on the client side.

3.4. Proposed architectures

Both the architectures explained in section 3.3 are implemented
and compared. As we discussed in section 3.2, if we chose to
develop a new markup language for multimodal browsing, we
need also an appropriate multimodal browser that is not
compatible with WAP technologies. In order to compare both
the WAP and the PC solutions, the multimodal markup language
is not feasible. In this section we give a brief description of our
implementation strategies.
Concerning the implementation with TTS and ASR on the client
(see Figure 4) we used a Java Applet embedded directly inside
the html page. Using Javascript we allow communication
between particular events like mouse or keyboard interaction
with the VoiceBrowser, TTS and ASR. The voice events is
caught from the applet and, in keeping with VoiceBrowser
policy, an event (like following an hyperlink or filling a form) is
sent to html page.

Figure 4. Client side implementation.

In the second architecture (server side implementation) the
Voice browser is on the client and voice logic (TTS and ASR)
are on the Server (Figure 5).

Figure 5. Server side Implementation.

The interactions between the requested html page and the
associated voice events are implemented though a Java servlet
(see Figure 6).



Figure 6. Servlet architecture.

4. RESULTS

The research activity focused on the comparison between
Multimodal Voice Browsing on PC and on WAP. The proposed
architectures associate VoiceXML with standard languages in
order to take advantage of the wide diffusion of both HTML and
WML.

4.1. Architecture Validation (requirements and services)

Our research was focused on evaluating of the performance of
the following architectures:

• Client-side implementation of TTS and ASR;
• Server-side implementation of TTS and ASR.

The proposed architecture are implemented using Java
technology [9, 10] ensuring system portability. The VoiceXML
browser will be an enhanced version of the standard VoiceXML
browser developed at CEFRIEL research laboratories. The
adopted TTS is Actor© developed by ELOQUENDO
laboratories and the adopted ASR was Spinet© developed by
IRST-ITC laboratories.

4.1.1. Client side implementation

The client side architecture needs both TTS and ASR installation
on the client. With the present technologies, it is not possible
install a robust and complete version of a TTS and ASR software
on a WAP devices. Moreover the Java applet that allow voice
and html interaction is quite big and needs a long time for
downloading though the Internet. A relevant issue regards the
communication between client and server. In this
implementation only a standard TCP/IP channel has to be
opened to allow the downloading of the requested html pages.
Voice interaction is performed between the user and the client
(see Figure 4). The advantage of such a solution is performance.
Multiple clients accessing the server do not overload it with
heavy computations (necessary especially for the recognizer),
and only a single communication channel between client and
server is necessary.

4.1.2. Server side implementation

The server implementation does not need heavy software
installation on the client. ASR and TTS are on the server (an
application server is needed instead of a standard web server) so
a new channel that allows voice communication between client
and server was needed. In our testing implementation both a
standard voice channel and a TCP/IP connection are opened

simultaneously. This choice is due to packets losing during the
transferring of voice information that could make the recognition
process critical. WAP devices do not allow the opening of two
channels, so our tests are performed over GPRS testing platform.
As for PC clients, we may consider using a Voice over IP
architecture (see Figure 5) or a synchronized POTS telephone
channel.

4.1.3. Architecture comparison

According to the application environment (PC or WAP browsing
though the Internet) the more feasible solution seems to be the
server side logic architecture. Respect the fact that we have a
growing of computational load of the server for an high number
of connections, we can have a device independent architecture
that allows a quick access at the requested information without a
long waiting for applet downloading.

5. CONCLUSIONS

This article intended to be an overview of the possible
architectures and technologies capable of delivering multimodal
services on different devices. Two architectures have been
proposed in order to cover the possible approaches and to
outline every characteristic. Both solutions were being
implemented, tested and validated. The results were be
compared in terms of flexibility, performance and quality of
service.

6. REFERENCES

[1] W3C "Voice Browser" Activity, http://www.w3.org/Voice/.
[2]Multimodal Requirements,

http://www.w3.org/TR/multimodal-reqs.
[3] VoiceXML Forum, http://www.voicexml.org.
[4] S Goose, M Newman, C Schmidt, L Hue, Enhancing Web

Accessibility Via the Vox Portal and a Web Hosted
Dynamic HTML-VoxML Converter,
http://www.www9.org/w9cdrom/354/354.
html.

[5] S Rollins and N Sundaresan, AVoN Calling: AXL for
Voice-enabled web Navigation,
http://www.www9.org/w9cdrom/55/55.ht
ml.

[6]S McGlashan, Position paper - Standards for voice
browsing,
http://www.w3.org/Voice/1998/Worksho
p/ScottMcGlashan.html.

[7] R Agarwal, Y Muthusamy, V Viswanathan, Voice
Browsing the Web for Information Access,
http://www.w3.org/Voice/1998/Worksho
p/RajeevAgarwal.html.

[8]M Ishizuka, T Tsutsui, S Saeyor, A multimodal
presentation markup language with character agent control



functions, http://www.miv.t.u-
tokyo.ac.jp/MPML/en/.

[9]Java Speech API Programmer's Guide,
http://java.sun.com/products/java-
media/speech/index.html.

[10] Cascading Style Sheets, level 2 CSS2 Specification,
http://www.w3.org/TR/REC-CSS2/.


