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ABSTRACT

HMM systems exhibit a large amount of redundancy. To this
end, a technique called Eigenvoices was found to be very
effective for speaker adaptation. The correlation between
HMM parameters is exploited via a linear constraint called
eigenspace. This constraint is obtained through a PCA analy-
sis of the training speakers.

In this paper, we show how PCA can be linked to the
maximum-likelihood criterion. Then, we extend the method
to LDA transformations and piecewise linear constraints.
On the Wall Street Journal (WSJ) dictation task, we obtain
1.7% WER improvement (15% relative) when using self-
adaptation.

1. OPTIMAL ESTIMATION OF THE EIGENSPACE

In this section, we show that the expected log-likelihood of
the data is related to a sum of squared euclidean distances in
the model space. This justifies using the SVD to compute the
eigenspace.

First, we will show that the log-likelihood of rows of
MLLR matrices defines a quadratic form. Then, we define
proper normalization to reduce the ML problem to a standard
least-squares problem, that can be solved by SVD.

1.1. Gaussianity of MLLR rows

Speaker dependent models are needed to build the eigenspace.
However, for large vocabulary applications, building these
models is difficult because of data sparsity and memory re-
quirements. In practice, most systems use MLLR-adapted
models [1]. MLLR transforms model means ��� by a matrix	�
� ���������������������
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The feature space has dimension 0 . Each row
��1

has dimen-
sion 032 , .

We are concerned with the adaptation of mean vectors, with
diagonal covariance matrices. The expected log-likelihood
after E-step of the Baum-Welch algorithm is4 
+5 ,6-7 8:9 �<; �>=@?�AB=C�.� 5ED 8 A ��F>G �� =@�.� 5ED 8 A�2 F � (2)

where
F

is a constant independent of the transformation. The
index H refers to a Gaussian distribution. Without loss of
generality, we only explore the case of a global transforma-
tion matrix. By hypothesis

F G �� is a diagonal matrix with
elements I 1 . The ML estimate [2] for the MLLR row J 1 has
precision K 1 : J 1L
 K G �1NM 1O� (3)M 1L
 7 8:9 �<; �P=C?�AQI 1RDOS 8CT1  � � (4)K 1-
 7 8:9 � ; �P=C?�AQI 1� �  �� � (5)

Rearranging the terms of eq(2) as in [3], we obtain:4 
U5 ,6 7 1 = ��1V5 J 1 A � K 1 = ��1V5 J 1 AW2 FYX � (6)

where
F X

completes the quadratic form. The sum is over all
rows Z of the transformation matrix. Eq. (6) states that MLLR
rows are Gaussian with mean J 1 and precision K 1 .
1.2. Eigenvoices with MLLR-adapted models

To be effective in fast speaker adaptation, we choose to re-
duce the dimensionality of the problem [4]. We define the set
of speaker transformation parameters by stacking all rows to
form a supervector
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The dimension of the supervector is 0\=@02 , A . We postulate
that speaker supervectors

�
lie in a low-dimensional space of



dimension ���!0 =@0 2 , A . We stack ML estimates of rowsJ 1 to form the supervector J , and we approximate it by:����� � � J � (8)

where
�

is a projection matrix of dimension ��� 0\=@0 2 , A .The matrix
�

is called the eigenspace and is estimated as fol-
lows. We observe a collection of 	 training speakers.They
form an observation matrix 
 
 � J S � T ����� J S � T � . Then we
choose

�
to be the � first eigenvectors of the matrix 
�
 � .

This will minimize the squared error of the approximation:��!
������������ ��� 

tr = � 
�
 � � � A�� � (9)

Unfortunately, this is not guaranteed to maximize the likeli-
hood. We propose a normalization that ensures optimality of
the dimensionality reduction under the maximum likelihood
criterion.

1.3. Root modulation

The quadratic form corroborates the fact that the ML row es-
timates J 1 are Gaussian. Maximizing

4
can also be seen

as minimizing a distortion of observations with covariancesK G �1 : ������ 4 
�� �"!� 7 1 = ��1V5 J 1 A � K 1 = ��1V5 J 1 A � (10)

The J 1 are the ML estimates for the row Z . We want to
optimize the supervectors

� 
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subject to the

eigenspace constraint. By assuming the precision matrix to
be constant after the E-step, we can modulate the variables byK$#%1 : &��1L
 K$#%1 ��1 � (11)&J 1 
 K G(' %1 M 1 � (12)

We may choose K #%1 to be symmetric. The likelihood be-
comes: 4 
N5 ,6 7 1 = &��1V5 &J 1 A � = &��1V5 &J 1 AW2 FYX � (13)

We call this normalization the root modulation because the
observation M 1 is multiplied by the square root of the preci-
sion.

1.4. ML dimensionality reduction

Now it becomes clear that the
4

function is related to the
least-squares problem in the root modulated space. If

&� S") T
corresponds to the modulated estimate of the speaker * , the
observation matrix of 	 speakers is

&
 
 � &J S � T ����� &J S � T � . We

maximize the likelihood by maximizing the correlation be-
tween speakers:������ 4 
+������ , 4 


tr = � &
 &
 � � � A.- � (14)

Also, we may shift by the bias to get the covariance rather
than the correlation. The optimal

�
is well-known to be a

truncation of the eigenvectors decomposition of
&
 &
 � . Thus,

the dimensionality reduction step is optimal with respect to
the likelihood in the root modulated space. The precision ma-
trix K 1 is proportional to the number of frames / 8 ; � =C?�A .Therefore, our estimate is robust to uneven distribution of
data. However, we assume the existence of the inverse ofK 1 , which does not exist when classes are not seen. Unseen
classes are tied with the closest seen class.

This is to be contrasted with the original eigenvoice ap-
proach, which reduces the dimensionality based on J S0) T . The
criterion function was distinct from the likelihood:� 
 7 ) = � 5 J A � = � 5 J A21
 4 
 7 ) = � 5 J A � K = �>5 J A � (15)

and thus suboptimal under ML. We will call this method the
inverse space transformation.

1.5. Estimation of the speaker model in the root space

Once we have obtained the optimal eigenspace, we can esti-
mate the constrained MLLR transformation corresponding to
a speaker. Let

� 1
be the matrix

�
corresponding to row Z .

The columns of
� 1

are the eigenvoices 3 S 1 T4 �65 
 , ��� � .
The models for root and inverse modulations constrain the

transformation rows to be:

Inverse space:
� 4 
� 487 �:9;5 � (16)

Root space:
� 4 
 K G #%4 � 4.7 �:9;5 � (17)

where 7 is called the eigenvalues decomposition.
For the case of the inverse space transformation, the solu-

tion can be obtained by direct differentiation of
4

in equa-
tion 2. This leads to an inefficient implementation. As noted
in [5], one can follow the Markov chain of sufficient statistics< 7 � 9 8 ; �>=@?�A � 7 � 9 8 ; �P=C?�A D 8>=@? < K 1 � M 1 =@? 7 � (18)

The inverse space and root space transformation have respec-
tively:� 4 
� 4 A 7 1 � �1 K 1 � 1�B G � 7 1 � �1 M 1 � (19)� 4 
 K G #%4 � 4 A 7 1 � �1 � 1 B G � 7 1 � �1 K G ' %1 M 1O� (20)



From these equations, the successive projections and mean-
square estimation steps become apparent. In the root space,
the inverse correlation may be computed offline.

1.6. Reestimation of the eigenspace

As with CAT [1] and MLES [6], we can reestimate the
eigenspace in the Baum-Welch algorithm. If we reestimate
the eigenspace the solution may not retain orthogonality of
the eigenvectors. We embed the eigen decompositions of
speaker location into the hidden data of the EM algorithm.
The resulting optimal eigenspace is:� 4 
 A 7 ) 7�7 � B G

� 7 ) K G ' %4 M 487 � � (21)

where for each speaker * , we estimate the eigen decomposi-
tion 7 
 A 7 1 � �1 � 1 B G � 7 1 � �1 K G ' %1 M 1 � (22)

The sufficient statistics are accumulators for
� 4 and the auto-

correlation E ) 7 7 � .

2. DISCRIMINATIVE PROJECTION

2.1. Objective functions

The supremacy of PCA schemes has been contested by dis-
criminative projection. Among them, the most popular is
LDA, which aims at maximizing the Fisher discriminant

�
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where
�� =�� A are the � first eigenvectors of the matrix. The

matrices
���

and
� �

are called the between-class and with-
class scatter matrices. Another popular discriminant objective
function is the trace � :������ � 
������� tr = ��� 5�� � � A 	 �+
���� = ��� 5�� � � A �

(24)
where

�
is a tuning parameter. We take the most positive

eigenvectors. In particular when
�E
 , ,� 


E ����� � 3�= � � 	 A 3�= 	 A 5 E � E !���� � 3�= � � " A � (25)

where
	

is the correct word sequence and
"

is a competing
word sequence. In our framework

�
is understood to be the

log-likelihood ratio and � the cross-entropy.

2.2. Definition of Scatter Matrices

The most decisive choice left to the designer of an LDA sys-
tem is the proper definition of classes. The choice of classes

affects the homoscedastic assumption (
� �

is global), the re-
liability of estimates, and fitness to the HMM classification
design. We have many criteria to choose from: speaker adap-
tation gain, intra speaker acoustic variability, and linguistic
variability. One has to distinguish between the speaker regres-
sion problem and the linguistic classification problem. LDA
is best suited for classification, but may also be used for re-
gression. We define three scatter matrices:

Inter-speaker variability:
� �$#

Between speakers

Intra-speaker regression:
�&% #

Average within speaker

Linguistic classification:
�&' #

Within speaker, using

competing candidates

Our final objective is to perform speaker linear regression to
minimize linguistic variability.

2.3. Experiments

To extract
� '

, we decoded the training set with a unigram
decoder. The decoder ran at about 2 times real-time. We re-
tained only the first best solution. We weighted scatter ma-
trices by unigram probabilities. For regression (

�(� 
 � %
),

we observed no enhancement. The intra-speaker variances
� %

are measured by deviation from the true speaker model, on a
sentence per sentence basis. The parameter

�
was set empir-

ically. Best results were obtained for � and
� � 
 ��'

on
Table 1.

3. PIECEWISE LINEAR DECOMPOSITION

Because of its simplicity and the presence of closed-form so-
lutions, the linear assumption has proven very effective in
many pattern regression problems. However, the linearity
constraint has no legitimacy. In this section, we investigate
a simple non-linear model. Our model is rooted on the equa-
tion �[
� � 7 � 2 �
) = 7 � A 7 ) � (26)

We have a linear model involving 7 � and
� �

. Then, we set��) = 7 � A 
+* � �)
if 7 ��
,.-0/ �� G)
elsewhere.

(27)

The vector
,

is called the discriminant. The residual space is
modelled by either

�1�)
or
� G)

according to the discriminant.
The method is generalized to multiple discriminants by taking
all possibilities of the signs, as shown on figure 1. For each
region 2 1 we grow a different residual eigenspace. Not all
dichotomies have a a populated intersection. For our experi-
ments, we chose canonical

, 1P
3� / � 1 G � � , � / � # G 1 � � . For the
particular case of

, �
, it is equivalent to splitting according to

the gender. The dimensionality of 7 � is � � . The vector
/ 4 is
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Fig. 1. Discriminants and regions

a zero vector of length
5
. The regions are the quadrants of the

eigenspace.
The MLED location is a linear programming problem. The

standard MLED formulae may be used. If the best point falls
out of region, then the search resumes on the boundary re-
gion. In our experiments, such a case happened very seldom.
It is possible to move the region assignment in the EM al-
gorithm. We obtain a soft-weighting comparable to a multi-
mixture eigenspace.

We reestimate of the eigenspace the same way we would
optimize the linear eigenspace. We can also optimize the
discriminative functions. Since the dimensionality of the pa-
rameter space is very high in comparison with the number of
speakers, speaker points will always be linearly separable. In
addition, since the optimal location almost always coincides
with its ML region, discriminants are redundant and conver-
gence of the discriminative functions is very quick. The per-
ceptron algorithm [7] can be used to update the discriminant
vectors

,
.

4. EXPERIMENTAL CONDITIONS

For our experiments we chose the Wall Street Journal (WSJ1)
Nov92 evaluation test. The training database, called SI-284
consists of 37k sentences produced by 284 speakers. The
acoustic frontend uses 39 MFCC coefficients and sentence-
based cepstral mean subtraction (CMS). We train a total of
��

k Gaussians with diagonal covariances, pooled in 1500
mixtures. The language model (LM) for this task is the stan-
dard trigram model provided by MIT. There are about 20k
words for decoding.

Our recognizer, called EWAVES [8], is a lexical-tree based,
gender-independent, word-internal context-dependent, one-
pass trigram Viterbi decoder with bigram LM lookahead. The
systems runs at about 3 times real-time, with a search effort
of about 9k states (on a Pentium IV at 1.5 GHz).

For all experiments, we used an eigenspace of dimension� 
 � /
. There was one full MLLR regression matrix for each

of the following classes: silence, vowels, and consonants.
For all experiments, we operated in self-adaptation mode: a
first pass produces the most likely hypothesis. The second
pass exploits adapted models. Five iterations of within-word
Viterbi alignments are performed between passes. Table 1
summarizes the results for MLLR only (MLLR), eigenspace-

constrained MLLR (MLED-MLLR), eigenvoice estimated on
MLLR models with MAP smoothing (MLED-MAP/MLLR).
Also, we report the piecewise linear extension applied on
MLED-MLLR models in the inverse space, Root space and
LDA space results. LDA space provided the best results.

WER
SI 10.8%
MLLR 10.5%
MLED - MLLR 9.8%
MLED - MAP/MLLR 9.6%
Piecewise-linear 9.6%
Root space 9.5%
LDA space 9.1%

Table 1. Results

5. CONCLUSION

In this paper, we show how to perform the dimensionality re-
duction under the ML criterion. This is obtained by normal-
izing the ML speaker estimates by their corresponding preci-
sion. Then, we employ a linear discriminant approach to im-
prove classification. Lastly, we relax the linearity constraint
by introducing piecewise linear eigenspaces. Results attest
the effectiveness of the approaches: the baseline WER is im-
proved by 1.7% (15% relative).
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