
ESTIMATED RANK PRUNING AND JAVA-BASED SPEECH RECOGNITION

Nikola Jevtić Aldebaro Klautau Alon Orlitsky

ECE Department, UCSD
9500 Gilman Drive

La Jolla, CA 92093, USA

ABSTRACT

Most speech recognition systems search through large finite state
machines to find the most likely path, or hypothesis. Efficient
search in these large spaces requires pruning of some hypothe-
ses. Popular pruning techniques include probability pruning which
keeps only hypotheses whose probability falls within a prescribed
factor from the most likely one, and rank pruning which keeps
only a prescribed number of the most probable hypotheses. Rank
pruning provides better control over memory use and search com-
plexity, but it requires sorting of the hypotheses, a time consuming
task that may slow the recognition process. We propose a prun-
ing technique which combines the advantages of probability and
rank pruning. Its time complexity is similar to that of probabil-
ity pruning and its search-space size, memory consumption, and
recognition accuracy are comparable to those of rank pruning. We
also describe a research-motivated Java-based speech recognition
system that is being built at UCSD.

1. INTRODUCTION

Speech recognition systems commonly model speech as finite state
machines (FSM’s). The recognition (or decoding) uses a Viterbi
search to find the most likely path, or hypothesis in the FSM. How-
ever, in many applications the FSM’s are exceedingly large and
exhaustive search is not feasible. Sub optimal search algorithms
are used instead, e.g., [1, 2].

The most common are the probability pruning, or Viterbi beam
search, algorithms. They are given a prescribed probability thresh-
old T , and, at each step, they extend all previous hypotheses and
maintain only the T -probable ones—those whose log probability
is at most T lower than that of the most likely hypothesis. By
contrast, rank, or histogram pruning algorithms are given a de-
sired number Nopt of hypotheses, and at each step, they extend all
previous hypotheses and maintain only the Nopt most likely ones.
Rank pruning is usually combined with probability pruning so that
only the T -probable among the Nopt most likely hypotheses are
maintained.

Probability pruning is fast, but may maintain an unlimited num-
ber of hypotheses, which can take longer to search and require
more storage. Rank pruning maintains a fixed number (Nopt) of
hypotheses, hence better controls memory usage and the size of
the search space, but, at every frame, it uses sorting to determine
the most probable hypotheses. Sorting is time consuming and may
considerably slow recognition.

We propose an estimated rank pruning technique which com-
bines the advantages of probability and rank pruning. Its time com-
plexity is similar to that of probability pruning and its search-space

size, memory consumption, and recognition accuracy are compa-
rable to those of rank pruning. For example, in experiments we
performed, estimated rank pruning used an average of 6% more
memory than rank pruning, the set of hypotheses it maintained
differed by at most 7% from those maintained by rank pruning, its
recognition accuracy was essentially the same, and its running time
was similar to that of probability pruning and about 50% lower
than that of rank pruning.

We implemented and tested the estimated rank pruning on a
speech recognition system that is being built at UCSD. The sys-
tem is Java based and uses an intuitive graphical user interface to
facilitate experimentation with a variety of speech recognition ar-
chitectures and parameters.

The estimated rank pruning technique is described next. In Sec-
tion 3 we describe the results obtained and compare them to rank
and hypothesis pruning. In Section 4 we briefly describe the sys-
tem used to implement the algorithm and in Section 5 we mention
the actual parameters it used.

2. ESTIMATED RANK PRUNING

Recall that an hypothesis is t-probable if its log probability is at
most t below that of the most probable hypothesis at its step. Let
Ni(t) be the number of t-probable hypotheses at step i and let ti
be the difference between the log probability of the most likely
hypothesis at time i and that of the Nopt’th most likely one at that
step. Note that Ni(ti) = Nopt.

Had we known ti, we could efficiently mimic rank pruning by
keeping only the the ti-probable hypotheses. But ti is not known,
and exact calculation of ti by sorting would use the very operation
we are trying to avoid. Instead, estimated rank pruning uses a fast
calculation to find a threshold t̂i such that Ni(t̂i) � Nopt.

To quickly determine t̂i, estimated rank pruning uses an empir-
ical observation indicating that N(t) is roughly exponential in t.
Figure 1 shows a semi-log scale plot of Ni(t) as a function of t
for several frames of a typical sentence. This relation appears in
almost all sentences and frames. It suggests that over short thresh-
old intervals, logNi(t) grows roughly linearly with t, namely,

Ni(t) � ai � e
bi�t; (1)

for some constants ai and bi. It follows that if we take two thresh-
olds t0 and t00 near (the unknown) ti, we can evaluate

bi =
logNi(t

0)� logNi(t
00)

t0 � t00
and ai = Ni(t

0

) � e
�bit

0

: (2)

We then use Equation (1) to determine

t̂i =
1

bi
ln

Nopt

ai
: (3)

0 20 40 60 80 100 120 140 160
10

0

10
1

10
2

10
3

10
4

t

N
(t

)

Fig. 1. Number of hypotheses as a function of the threshold

We then use t̂i as our estimate of ti and maintain only the t̂i-
probable hypotheses.

In our implementation we choose t0 = ti�1 and t00 = (1� �) �
ti�1 where � is a small constant, usually 0.2. Typically, ti is not
far from ti�1, hence t0 and t00 are fairly close to ti. Note that t̂i�1

is not used to estimate t̂i, only to determine the points t0 and t00

on which the estimate of t̂i is based. Hence, if t̂i is very different
from t̂i�1, the estimate will be less reliable, but not necessarily
biased.

We investigated two versions of the algorithm. Both increase
efficiency by pre-pruning while extending the hypotheses. The
conservative version (CV) keeps all T -probable hypotheses, while
the efficient version (EV) keeps only the t̂i�1-probable hypotheses.

The protocols can be summarized as follows:

At frame i:

1. Starting with the most likely and continuing in any order,
extend all hypotheses keeping only those within

CV: T

EV: t̂i�1

from the best extended hypothesis thus far.

2. Set t0 = t̂i�1 and t00 = (1� �) � t̂i�1.

3. Calculate Ni(t
0) and Ni(t

00).

4. Determine ai and bi using Equation (2).

5. Use Equation (3) to determine t̂i.

6. Set t̂i = min(t̂i; T).

7. Prune all but the t̂i-probable hypotheses.

Both algorithms run efficiently. Step 1 is the same as in other
Viterbi searches. Steps 2, 4, 5, and 6 take a small constant time.
Steps 3 counts hypotheses and is linear in their number. Step 7
eliminates all non t-probable hypotheses hence takes linear time
as well; it is common to all search algorithms, and in practice is
combined with step 1.

Step 1 describes the pre-pruning. Note that algorithm CV re-
moves only hypotheses that are not T -probable. It follows that
all t̂i-probable hypotheses are preserved, hence assuming thatt̂i is
close to the actual threshold, we will end the iteration with roughly

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

time in seconds

nu
m

be
r

of
 h

yp
ot

he
se

s

pre−pruning using T = 160
pre−pruning using t

i−1

pruning using t
i

Fig. 2. Hypotheses selected by different thresholds (Nopt = 2000)

Nopt hypotheses.
While CV is faster than rank pruning, it still requires as much

memory as probability pruning. EV addresses this by using a
stronger pre-pruning step. It assumes that the previous threshold
is close to the current one, and prunes all hypotheses that are not
t̂i�1-probable. However when t̂i�1 < t̂i it may pre-prune some
t̂i-probable hypotheses which should have been kept, namely those
that are not t̂i�1-probable1.

Figure 2 shows the effects of pre-pruning in the two versions of
the algorithm. The dashed, solid, and dotted lines show the number
of hypotheses maintained by CV after pre-pruning, by CV at the
end of each iteration, and by EV after pre-pruning respectively.
Whenever the dotted line falls below the solid line, the pre-pruning
step of EV eliminates hypotheses that should have been preserved.

CV and EV can be viewed as the two extremes of optimizing
the accuracy of hypotheses pruning (CV) and minimizing memory
use (EV). Intermediate algorithms can also be considered.

The next section described the results obtained using estimated
rank pruning. Section 4 describes the system used to run the tests
and Section 5 describes the actual parameters used.

3. SIMULATIONS AND RESULTS

We tested the algorithms on the TIMIT database (for a precise de-
scription see Section 5).

We compared the performance of rank pruning to that of the two
estimated rank pruning algorithms. We targeted the same number
of maintained hypotheses in all algorithms. The results show that
the WER is roughly the same across the three algorithms, but run
times and memory consumption varied significantly. Algorithm
CV runs faster than rank pruning, but uses more memory. EV runs
even faster than CV and on the average uses only marginally more
memory than rank pruning.

Figure 3 plots the run times of the three algorithms relative to
the actual duration of the recognized speech. The global threshold
T was fixed at 160, and Nopt varied from 500 to 5000. As can be

1Some of these hypotheses may still survive as the probability of the
best hypothesis extended before them may be lower than that of the best
extended hypothesis at the end.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

2

3

4

5

6

7

8

9

Number of allowed hypotheses

R
ea

l−
tim

e
ra

tio

 Rank pruning
 Conservative version
 Efficient version

Fig. 3. Time performance of the three decoders

observed, EV is consistently about twice as fast as rank pruning,
and about one real time faster than CV. For example, with a global
threshold T = 160 and Nopt = 2000, rank pruning runs at 4.37
times real time, CV runs at 3.2 times real time, EV at 2.23.

The difference between the run time of CV and EV can be ex-
plained by the more aggressive pre-pruning in EV. It results in
fewer hypotheses that need to be counted, fewer hypotheses at the
end of each step, and less work for Java’s garbage collector.

Figure 4 plots the WER of the three algorithms for the same
range. As can be observed, the three algorithms have similar ac-
curacies. For example, with the same parameters as above, the
WER’s were 17.8% rank pruning, 17.67% CV and 17.74% EV.

Next we evaluate the memory usage of the two estimated prun-
ing algorithms and their accuracy in finding the most likely hy-
potheses.

Let Mi denote the number of hypotheses maintained by the es-
timated pruning algorithms at frame i, just after Step 1, and define

miss =
jNi(t̂i)�Noptj

Nopt

, and over = max

�
0;

Mi�Nopt

Nopt

�
. When

computing their average values, miss is averaged over all frames
when ti < T , namely where Ni(T) > Nopt, and over is aver-
aged over all frames since we may have Mi � Nopt even when
Ni(T) < Nopt (due to the uncertainty of the best score during
pre-pruning step).

Table 1 shows the average and peak number of hypotheses kept
in the list in excess to Nopt. Average values of EV suggest that the
method has successfully addressed the memory limitations. The
fact that peak values are high is not alarming since the average
values show that it can not be frequent. In designing the system
that uses EV, we should still be prepared to handle more hypothe-
ses then Nopt.

In Table 2 we show the absolute error, relative to Nopt, in rank
estimation. CV shows that a good estimate is possible as the aver-
age absolute error is less then 2.5%. The increased average error
in EV comes from the pre-pruning stage. As mentioned before,
this can be brought as close to performance of CV at the expense
of increasing memory.

This difference is reflected in the WER as shown in Figure 4.
CV outperforms EV in almost every point. However, EV performs
roughly the same as rank pruning. It is not clear if CV system-

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
17

17.5

18

18.5

19

19.5

Number of allowed hypotheses

W
E

R
 p

er
 h

un
dr

ed
 w

or
ds

 Rank pruning
 Conservative version
 Efficient version

Fig. 4. Recognition performance of the three decoders

atically outperforms rank pruning by coincidence. We have not
observed significant increase in the average number of hypotheses
extended by CV. There may therefore be an unobserved connec-
tion between the way we determine probability and the nature of
recognition process that helps increasing the count only when it is
beneficial for the recognizer.

If we are to estimate the effects of this technique applied to large
vocabulary systems, we could say that in absolute numbers the
savings would be higher. Mainly because Nopt is usually around
10000 in LVCSR, and sorting complexity increases faster then lin-
early. On the other hand, relative increase in overall system perfor-
mance may not be so high since large vocabulary systems usually
use more complex phone models (like triphones, pentaphones) and
spend most of the recognition time in computing models.

4. THE SYSTEM

The algorithm was tested on a speech-recognition system that is
being built at UCSD. The main purpose of the system is to facil-
itate speech recognition research. A state-of-art ASR system can
easily exceed 50,000 lines of code. Additionally, in some sites, es-
pecially universities, the developers change frequently. These fac-
tors call for the construction of a well-structured and documented
code, with a reasonable learning curve. Based on these factors, the
Java platform was selected. Java is easy to learn, use, and maintain.
It is portable, object-oriented, and supports networked applications
and graphical user interfaces. Currently, Java is slower than C. In
some benchmarks we ran with a Mel Frequency Cepstral Coeffi-
cient (MFCC) front end, Java was 1.5 to 3 times slower than C, but
the gap has been shrinking as Java compilers have evolved.

The system utilizes the three traditional modeling stages: front
end, acoustic, and language. Within each stage, the system lets the
user select among several options.

The front-end module implements several feature sets. MFCC’s
with normalized energy and derivatives obtained through linear re-
gression [3], PLP [4], RASTA [5], LSF [6], and Seneff’s auditory
model [7]. Some of these features are implemented in Java, while
others use interfaces to publicly available software which the sys-
tem also supports.

Conservative version Efficient version
Nopt avg. over max over avg. over max over

500 241.6% 1187.0% 9.4% 411.8%
750 177.3% 866.0% 8.6% 244.7%
1000 139.9% 721.9% 8.0% 226.7%
1250 115.2% 615.4% 7.6% 214.6%
1500 97.6% 546.5% 7.2% 203.5%
1750 84.3% 494.4% 6.9% 207.4%
2000 73.8% 458.9% 6.5% 197.8%
2250 65.4% 422.5% 6.2% 181.2%
2500 58.4% 396.0% 5.9% 185.7%
2750 52.6% 371.5% 5.6% 192.5%
3000 47.5% 356.4% 5.4% 180.0%
3250 43.2% 334.7% 5.1% 158.4%
3500 39.4% 320.4% 4.9% 139.9%
3750 36.0% 308.6% 4.6% 123.9%
4000 33.1% 293.8% 4.4% 110.0%
4250 30.4% 280.8% 4.2% 97.6%
4500 28.1% 271.8% 4.0% 94.0%
4750 26.0% 263.9% 3.8% 89.9%
5000 24.1% 252.3% 3.6% 82.4%

Table 1. Extra hypotheses stored

The acoustic models support continuous hidden Markov models
(HMMs) with and without state sharing. The HMMs can be re-
estimated with the isolated or embedded Baum-Welch algorithm.
The models can be initialized by Gaussian splitting or a segmental
K-means procedure. Training can be conducted through a user-
friendly GUI that also provides a summary of the results.

The language-model options include n-grams of arbitrary
depth, Katz’s back-off model, and several variations of Good-
Turing probability estimates. Two options for language model
look-ahead [8] are also available.

The decoder is frame based and contains options for probability
pruning and exact and approximate rank pruning as explained.

5. PARAMETERS

To evaluate estimated rank pruning, we tested the two algorithms
on the TIMIT database. We note however that the test was some-
what unfair as the recognizer used pronunciation and language
models based partly on the test set. Therefore the results described
reflect the relative merits of the various pruning techniques and
should not be used for comparison with other baseline systems.

The front end used 39-dimensional feature vectors, 12 mel-
based cepstral coefficients, energy, and their first and second
derivatives. Frame width was 25ms and frame shift was 10ms.
The system used 48 speaker-independent monophones as defined
in [9]. They were modeled as 3-state, left-to-right, HMMs with at
most ten Gaussian mixture components. Short pause was modeled
as a single state HMM. The models were trained on the training
portion of TIMIT. The tests were performed on TIMIT core test
set.

The language model used bigrams based on both the training
and testing sets. Its back-off probabilities were determined by a
Good-Turing estimate. The total number of words in TIMIT is
6100, but due to the size of the data only about 950 contexts were
created. The average perplexity of the core test set was 1741.

The pronunciations dictionary used all pronunciations appear-
ing in both the training and testing sets according to the hand-
labeled transcriptions. Each pronunciation was assigned a proba-
bility proportional to its frequency. The final network was obtained
by composition of the language model network and the pronunci-

Conservative version Efficient version
Nopt avg. miss max miss avg. miss max miss

500 2.5% 97.0% 8.2% 97.6%
750 2.3% 73.7% 7.8% 75.6%

1000 2.2% 45.9% 7.7% 71.2%
1250 2.2% 27.0% 7.6% 69.5%
1500 2.2% 25.8% 7.5% 66.4%
1750 2.3% 26.3% 7.5% 66.5%
2000 2.3% 23.9% 7.4% 66.1%
2250 2.3% 24.8% 7.4% 66.5%
2500 2.4% 25.8% 7.3% 66.0%
2750 2.4% 25.0% 7.2% 65.2%
3000 2.4% 23.2% 7.1% 64.8%
3250 2.4% 24.1% 7.1% 65.2%
3500 2.4% 23.0% 7.0% 64.4%
3750 2.4% 23.4% 6.9% 63.7%
4000 2.4% 21.9% 6.8% 63.5%
4250 2.5% 21.8% 6.7% 63.1%
4500 2.5% 20.9% 6.7% 62.6%
4750 2.5% 20.1% 6.6% 62.4%
5000 2.5% 20.6% 6.6% 62.0%

Table 2. Absolute estimation error

ation dictionary. The total number of vertices in final network was
112138 and the number of edges was 184450. Hypotheses corre-
sponded to edges.

The test was performed on a Pentium 3 500MHz computer with
128MB of memory.

6. REFERENCES

[1] H. Ney and S. Ortmanns. Dynamic programming search for
continuous speech recognition. IEEE Signal Processing Mag-
azine, 16(5):64–83, Sept. 1999.

[2] N. Desmukh, A. Ganapathiraju, and J. Picone. Hierarchi-
cal search for large-vocabulary conversational speech recog-
nition: working toward a solution to the decoding problem.
IEEE Signal Processing Magazine, 16(5):84–107, Sept. 1999.

[3] J. Picone. Signal modeling techniques in speech recognition.
Proceedings of the IEEE, 81(9):1215–47, Sep. 1993.

[4] H. Hermansky. Perceptual linear predictive (plp) analysis
of speech. Journal of the Acoustical Society of America,
87(4):1738–52, Apr. 1990.

[5] H. Hermansky and N. Morgan. Rasta processing of
speech. IEEE Transactions on Speech and Audio Processing,
2(4):578–89, Oct. 1994.

[6] F. Soong and B.-H. Juang. Line spectrum pair (lsp) and speech
data compression. ICASSP 84, 1:p.1.10/1–4, Mar. 1984.

[7] S. Seneff. Pitch and spectral estimation of speech based on
auditory synchrony model. ICASSP 84, 3:p.36.2/1–4, Mar.
1984.

[8] H. Ney and S. Ortmanns. Look-ahead techniques for fast beam
search. Computer speech and language, 14(1):15–32, Jan.
2000.

[9] K.-F. Lee and H.-W. Hon. Speaker-independent phone recog-
nition using hidden markov models. IEEE Transactions
on Acoustics, Speech and Signal Processing, 37(11):1641–8,
Nov. 1989.

