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ABSTRACT

A new approach to represent temporal correlation in an au-
tomatic speech recognition system is described. It intro-
duces an acoustic feature set that captures the dynamics of
speech signal at the phoneme boundaries in combination
with the traditional acoustic feature set representing the pe-
riods that are assumed to be quasi-stationary of speech. This
newly introduced feature set represents an observed random
vector associated with the state transition in HMM. For the
same complexity and number of parameters, this approach
improves the phoneme recognition accuracy by 3.5% com-
pared to the context-independent HMM models. Stop con-
sonant recognition accuracy is increased by 40%.

1. INTRODUCTION

Two of the main drawbacks of the current HMM model for
automatic speech recognition are the assumptions of condi-
tionally independent observations given the state sequence
which results in not utilizing the information related to tem-
poral correlation, and the geometric duration model which
is far from being an accurate model of the duration of the
subunits of speech [1, 2, 3]. The first problem has been
addressed by several approaches including using context-
dependent models of speech units, implicit trajectory mod-
els, segmental acoustic features, explicitly dynamic acoustic
features, and using acoustic features related to the temporal
correlation within the observation vector associated with the
quasi-stationary subunits represented by HMM states, [1].
Other researchers, [2], went further and advocated the use of
relatively large temporal segments of speech signal, believ-
ing that the information about a phoneme is not localized
to the period of that phoneme only. Solutions of the sec-
ond problem were first introduced in [3] by adding explicit
model of the phoneme duration to the HMM model. This
model uses Gamma probability density function to model
the duration. Other proposed solutions to this problem in-
clude a higher-order HMM that gives better model of the
duration than the first-order HMM and reduces the effect

of the assumed Markovian property of the state transitions,
[4].

As HMM has become the dominant model for speech
recognition, many researchers, [4], have noticed that the
state transition probabilities have a negligible impact on the
recognition rate and are often ignored. These observations
and the previously mentioned need for a more accurate model
of the duration of the phonemes than the geometric model
motivate the consideration of the actual rule that should be
assigned to the transition probabilities in speech recognition
tasks.

One of the main motivations of the recent search for an
alternative model for speech recognition is that several ex-
periments proved that human perception of speech is based
mainly on certain landmarks in the speech signal [5]. These
landmarks identify times when the acoustic manifestations
of the linguistically motivated distinctive features are most
salient. Most of these landmarks are at the boundaries of
the quasi-stationary subunits of speech. This proves that the
importance of having a good representation of the proba-
bility of transition is at least as important as having a good
representation of these quasi-stationary subunits of speech.
Studies of acoustic landmarks suggest a new solution to the
old problem of HMM transition modeling: perhaps phone
transition probabilities in an HMM should be observation-
dependent.

This paper presents a representation of these transition
probabilities by a mixture of Gaussian probability density
functions. They model the probability density function of
acoustic measures that are associated with the salient prop-
erties of the spectrum at this specific transition. This ap-
proach not only makes use of the information in the spec-
trum at these transitions but also allows an efficient employ-
ment of the parameters of the HMM model in the utterance
decoding process. The effect of the transition probabilities
is no longer negligible compared to the high dimensional-
ity of the observation probability density functions. This
approach is flexible in that it allows employing different
acoustic features to model different state transitions. The
selection of each specific acoustic feature set can be based



on phoneme classification research or by using information-
theoretic measures for selection.

2. NOMENCLATURE

Throughout this representation, the notation used in [6] will
be adopted. Each phoneme in the phoneme set is repre-
sented by a three-state left-to-right HMM. Let A = [aij ]n×n

be the state transition matrix. Associated with each state j of
the hidden Markov chain is a probability density b j(X) of
the observed d-dimensional random vector X, and with each
transition from i to j a probability density a ij(Y ) of the l-
dimensional random vector Y. The probability densities of
both of them are approximated by a mixture of Gaussian
probability density functions.

bj(X) =
m∑

k=1

cjkN(X,µjk, Ujk)

where m is known; cjk ≥ 0 for 1 ≤ j ≤ n, 1 ≤ k ≤ m;

m∑
k=1

cjk = 1

for 1 ≤ j ≤ n; and N(X,µ, U) denote the d-dimensional
normal density function of mean vector µ and covariance
matrix U.

aij(Y ) = Pr(qt = j|qt−1 = i)Pr(Y |qt = j, qt−1 = i)

= Pr(qt = j|qt−1 = i)
p∑

r=1

wijrN(Y, ρijr , Vijr)

where p is known; wijr ≥ 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤
r ≤ p;

p∑
r=1

wijr = 1

for 1 ≤ i ≤ n, 1 ≤ j ≤ n; and N(Y, ρ, V ) denote the l-
dimensional normal density function of mean vector ρ and
covariance matrix V. Let O = (O1, O2, ...., OT ) be a given
observation sequence of the vector X and and let
Z = (Z1, Z2, Z3.....ZT ) be another given observation se-
quence of the vector Y. Then given both O and Z and a
particular choice of parameter values λ of both Gaussian
mixtures, we can efficiently evaluate the likelihood func-
tion, Lλ(O,Z), by the forward-backward method of Baum.
The forward-backward procedure is used to calculate:

αt(i) = Pr(O1, O2, ..., Ot, Z1, Z2, ..., Zt, qt = qi|λ)

and

βt(i) = Pr(Ot+1, Ot+2, ...OT , Zt+1, Zt+2, ...ZT |qt = qi, λ)

The likelihood function can be written as

Lλ(O,Z) =
n∑

i=1

n∑
j=1

αt(i)aij(Zt+1)bj(Ot+1)βt+1(j)

for any t between 1 and T-1.

3. THE ESTIMATION ALGORITHM

The reestimation equations for the HMM parameters are
based on [6]. We extended them to calculate the values of
the parameters of the Gaussian mixtures representing the
state transition probabilities as following.

ẃijr =
∑T

t=2 γt(i, j, r)∑T
t=2

∑p
r=1 γt(i, j, r)

(1)

ρ́ijr =
∑T

t=2 γt(i, j, r)Zt∑T
t=2 γt(i, j, r)

(2)

V́ijr =
∑T

t=2 γt(i, j, r)(Zt − ρijr)(Zt − ρijr)T

∑T
t=2 γt(i, j, r)

(3)

ćjk =
∑T

t=1 ζt(j, k)∑T
t=1

∑m
k=1 ζt(j, k)

(4)

µ́jk =
∑T

t=1 ζt(j, k)Ot∑T
t=1 ζt(j, k)

(5)

Újk =
∑T

t=1 ζt(j, k)(Ot − µjk)(Ot − µjk)T

∑T
t=1 ζt(j, k)

(6)

where

γt(i, j, r) = αt−1(i)bj(Ot)wijr
∂aij

∂wijr
|ztβt(j) (7)

for 1 < t ≤ T

ζt(j, k) =




cjk
∂bj

∂cjk
|otβt(j), for t=1∑n

i=1 αt−1(i)aij(Zt)cjk
∂bj

∂cjk
|otβt(j)

for 1 < t ≤ T

(8)

Proof : Using the EM algorithm, [7], to maximize the
likelihood of the observable data (X,Y), we iteratively max-
imize the expectation of the log likelihood of the complete
data (X,Y,S)

Q(λ, λ́) = E[log(f(X,Y, S|λ́)|X,Y, λ]

The expectation can be replaced by the sum over all pos-
sible state sequences S, all possible state mixture densities
sequences K, and all possible state transitions mixtures se-
quences G.

Q(λ, λ́) =
∑
S

∑
K

∑
G

Lλ(O, z, S,K,G) logLλ́(O, z, S,K,G)



where

Lλ(O,Z, S,K,G) =
T∏

t=1

aqt−1qt(Z)bqt(O)

Assuming the independence of the observation vectors,
and rewriting the previous equation

Q(λ, λ́) =
∑
S

∑
K

∑
G

Eqtktgtt logN(Ot, µ́qtkt , Úqtkt)

where

Eqtktgtt ≥ 0

This formula is the same as that in [8] and hence the
reestimation formulas in (4)-(6) are proven to be the maxi-
mum likelihood estimates of the parameters.

Assuming the independence of the observation vectors
X and Y, the auxiliary function Q(λ, λ́) can be written also
as

Q(λ, λ́) =
∑
S

∑
K

∑
G

Hqtktgtt logN(Zt, ρ́qt−1qtgt , V́qt−1qtgt)

where

Hqtktgtt ≥ 0

This formula is the same as that in [8] and hence the
reestimation formulas in (1)-(3) are proven to be the maxi-
mum likelihood estimates of the parameters.

4. EXPERIMENTS AND RESULTS

The speech is sampled at 16 KHZ, and preemphasized then
a Hamming window with a width of 20 ms is applied every
10 ms.

To show the effectiveness of this structure even if the
models have the same set of features available for a conven-
tional HMM speech recognition systems, we used a set of
features of 12th order LPC-based cepstrum coefficients, and
energy and their first difference. No language model is em-
ployed and cepstrum mean normalization is used for chan-
nel adaptation. 3000 utterances from the TIMIT database
are used to train two HMM models: one based on the con-
ventional structure of HMM with feature vectors of length
26, and the new one proposed in this paper. Each phoneme
is represented by three states: two of them have feature
vector of length 26 while the last one has a feature vector
of length 13 ( cepstrum coefficients+energy) while the dif-
ference vector is associated with the transition probabilities

from this phoneme to others. The Gaussian mixtures repre-
senting the transition probabilities are tied together into 180
Gaussian probability density functions. The 61 phonemes
defined in the TIMIT data base are combined to 48 phonemes
for training. The typical 39 distinct phonemes are used as
the phoneme set for recognition. An explicit duration model
using Gamma probability density function is used within the
proposed system at the phonetic boundaries only.

fp(d) =
1

b
ap
p γ(ap)

dap−1e
− d

bp

where

bp =

∑J
i=1 d2

p,i∑J
i=1 dp,i

−
J∑

i=1

dp,i,

ap =
1
J

(
∑J

i=1 dp,i)
2

∑J
i=1 d

2
p,i − (

∑J
i=1 dp,i)

2 ,

J is the number of occurrences of phoneme p in the training
data, and dp,i is the duration of the ith occurrence of the
phoneme p.

Testing the resulting models using 200 utterances from
the TIMIT database, we get a phone recognition accuracy
of 58.6% using the conventional HMM and of 62% using
the proposed system. Phonemes of short duration like stops
which are rarely correctly recognized and most of the time
deleted using the conventional system are very rarely missed
by the new system. The stop consonant recognition accu-
racy has increased from 28% to 71% if the phoneme state
transitions are trained from manually segmented and labeled
data, and to 67% if trained using the extended Baum-Welch
training. However, the introduction of the new transition
probability models increases the number of substitution er-
rors especially with a similar phoneme. This may be at-
tributed to using only 12 cepstrum coefficients and energy
as state-bound observations used in modeling the phonetic
units. Increasing the feature vector length for these pho-
netic units is expected to solve this problem and increase
the overall phonetic recognition accuracy.

Figure 1 shows the total recognition accuracy and the
stop recognition accuracy for the conventional system, the
”inter-state” model tht uses Gaussian mixture models of state
transitions at the level of the state, and the ”inter-phoneme”
model that uses mixture models of state transitions at the
level of the phoneme. Mixture Gaussian models were either
trained once using manually transcribed phoneme bound-
aries and not updated during training, or were updated con-
tinuously during Baum-Welch training using equations (1)-
(3). The significant increase in stop recognition accuracy
compared to the total improvement in recognition accuracy
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Fig. 1. Total Phonetic and Stop Recognition Accuracy

is due to the ability of the proposed model to precisely de-
termine the start and end of the closure portion of stops
and hence to recognize the release portion. This ability is
decreased by updating the parameters using the extended
Baum-welsh training described before, but the decrease is
small compared to the advantage of using training data that
is not necessarily labeled and segmented manually.

These results are achieved using the same set of acoustic
features and approximately the same number of parameters
in both systems. The percentage of correct, substitutions,
deletions, and insertions are shown in table 1

Table 1. Phone recognition results for base model and pro-
posed model

Base Model Proposed Model

Correct 58.6% 62%
Substitutions 30.1% 32.2%

Deletions 11.3% 5.8%
Insertions 13.7% 16.8%

5. DISCUSSION

An improvement of the conventional HMM speech recog-
nition system is introduced. It allows HMM modeling of
speech to be more similar to human perception than in the
conventional HMM modeling of speech. The advantages

of this system include exploiting the information related to
temporal correlation in speech, making use of the transi-
tion probabilities in the conventional HMM system which
were usually negligible during utterance decoding, and al-
lowing the use of heterogeneous acoustic measures for dif-
ferent phoneme transitions. In this work, Cepstrum and en-
ergy difference features were used to model the transition
probabilities. An extension of this work could be to allow
heterogeneous acoustic measures for different state transi-
tions, in order to better exploit the flexibility of the proposed
system. This approach is more efficient in consonant recog-
nition and especially stop recognition compared to vowel
and nasal recognition.
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