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ABSTRACT

This paper describes the use of exponential models to
improve Non-negative Matrix Factorization (NMF) based
topic language models for Automatic Speech Recognition.
This modeling technique borrows the basic idea from La-
tent Semantic Analysis (LSA), which is typically used in
Information Retrieval. An improvement was achieved when
exponential models were used to estimate the a posteriori
topic probabilities for an observed history. This method im-
proved the perplexity of the NMF model, resulting in a 24%
perplexity improvement overall when compared to a trigram
language model.

1. INTRODUCTION

The NMF approach to topic language modeling has been in-
troduced recently [1]. The concept is similar to the Singular
Value Decomposition method [2] in the way the challenges
of topic dependent modeling are approached. In particular,
finding an optimal segmentation of the training corpus into
topic, sparseness of the training data caused by this segmen-
tation, and, finally, finding a method for topic assignment
during the recognition. There is a trade-off in topic depen-
dent model design: the finer the distinction between topics,
the greater the number of topics used and the smaller the
amount of data available to train each topic. Use of expo-
nential models has been proposed [3],[4],[5] to reduce this
effect as parameters of only those words which are impor-
tant to a particular topic are adapted, but there is still a need
for explicitly defined set of topics. Cache language models
[6] do not require such a set, the recent history is used di-
rectly to adapt the language model parameters, without ex-
plicitly determining the current topic. But due to the small
amount of the data seen in the history, such adaptation is
usually performed on a few unigram statics only.

The Latent Semantic Models ( both SVD and NMF based)
can be viewed as an extension of the cache models. If Q
is the space of all possible unigram distributions on a vo-
cabulary V , the idea is to find a linear subspace S � Q :

rank(S) � rank(Q) which can most accurately span all
unigram distributions observed in a large training corpus.
Local unigram distributions are typically obtained by parti-
tioning the training corpus into a large set of relatively small
documents where each model provides a sample of the dis-
tribution. The spanning vectors of S are obtained by lower
rank approximation of the matrix representing local word
dependencies (typically represented as word-document oc-
currence counts). During the recognition, the observed his-
tory is used to determine a particular distribution from S by
finding an appropriate linear combination of the spanning
vectors. The number of estimated parameters (weights of
the spanning vectors) is given by the rank of the subspace,
which is much smaller than number of parameters in a com-
pletely unrestricted unigram model.

Let us illustrate this method on an example. Consider
two words, “stocks” and “bonds”. If articles related to fi-
nancial news are included in the training corpus, one of the
basis vectors will most likely point in the directions of both
words, suggesting that these words tend to appear together.
Let us assume the word “stocks” appears in the history, but
“bonds” does not. A cache model would increase the prob-
ability of “stock” only. An LSA model would increase the
weight of the basis vector, so the probabilities of both words
would be increased.

2. NMF MODEL

A distinct property of the NMF technique in comparison to
SVD is that the elements of the vectors spanning the prob-
ability subspace are non-negative. This facilitates the inter-
pretation of the NMF spanning vectors as probability distri-
butions. An iterative algorithm to find the non-negative fac-
torization of the word-document matrix has been presented
[7]. The computational costs associated with each iteration
are indirectly proportional to the spareness of the factored
matrix, a very desirable feature in our situation.

The method described in more detail in [1] will be used.
A square matrix describing local word dependencies as word



co-occurrence counts is constructed . One advantage of this
approach is that there is no need for the training corpus to be
explicitly segmented into documents. Another advantage is
that the low count elements in the word-word co-occurrence
matrix can be replaced by zero, which reducing the number
of computations associated with each iteration.

The co-occurrence matrix can be factored into:

AV�V � QV�RZRQ
T
V�R; (1)

where V is the vocabulary size andR is the number of latent
topics, typically R << V . All elements of A;Q and Z are
non-negative. We can interpret the columns of Q as topic
dependent unigram distributions and diagonal elements of
the diagonal matrix Z as topic priors Z(t). It should be
noted that the spanning vectors are neither orthogonal nor
independent. But we have observed that for R << V , most
of the vectors are independent, since each vector contains
non-zero probabilities for a different set of words.

Having the set of conditional probabilitiesPNMF (wjt) =
Qwt, a unigram word probability distributions dependent
on the observed history P (wjH) can be constructed as a
weighted mixture

P (wjH) =
X

t

P (wjt)P (tjH): (2)

In the next section, we will introduce a new method for es-
timation of P (tjH).

3. TOPIC WEIGHTS ESTIMATION

In this section we will describe a method for estimation of
topic weights P (tjH). A history instance is a particular se-
quence of words Hn = (wn�k; wn�k+1; : : : ; wn�1). Let
Hn be the set of words which appear in the history Hn and
the probability of PNMF (wjt) is non-zero for at least one
topic t (excluding the most frequent function words). We
will simplify the notation by omitting the index n further,
since the algorithm is applied in the same way to each in-
stance of a new history. Let wH

i be a particular word in H .
As a baseline, the method of weights estimation described

in [1] is used. We assume that the observed history can be
generated by any of the topics, independently one word at
a time. We can then express the contribution of a particular
word in the history to the conditional weight of each topic
as

�ij =
P (wHi jtj)P (tj)P
l P (wHi jdl)P (dl)

: (3)

Then we can find the probability P (tjH) as an average of
normalized contributions:

P (tjH) =

P
i �itP

l

P
i �il

=

P
i �it

jH j
; (4)

where jH j is size of the history. The reason for adding the
probability contributions from each word in the history is
that we look at them as counts, rather than probabilities. We
are not able to use a product of those probabilities because,
due to the sparseness of Q, there is almost always at least
one P (wHi jt) = 0.

It can be seen that, for all topics which assign very low
or zero probability to all words in a particular instance of
history, the probability P (tjH) can be zero as well. Thus
some smoothing technique should be used to improve the
robustness of this model.

The minimum divergence framework can be used. In
this case, we are looking for the set of weights model which
has the lowest distance from the a priori weights Z(t):

D(P (tjH); Z(t)) =
X

t

P (tjH) log
P (tjH)

Z(t)
; (5)

and which satisfies the constraints:
X

t

P (tjH)fw(t) = Ê[fw];

X

t

P (tjH) = 1:
(6)

The solution to this constraint optimization problem can be
shown to have a form:

P (tjH) =
1

M
Z(t)e

P
w2V

�wfw(t); (7)

for set of wordsw selected from the vocabulary, whereM =P
t Z(t)e

P
w2V

�wfw(t) .
We need to make choice of the feature functions fw(t)

and estimate their target expectations Ê[fw]. We would like
to utilize all the information available: the observed history
tells us that certain words have higher probability of occur-
rence than the global unigram distribution suggests, and the
NMF model provides us with a set of topic dependent un-
igram distributions. One strategy is to define the feature
functions using these topic distributions, find their expected
values, and then find the relationship between the target ex-
pectations and the history.

Let us consider a choice of the feature functions:

fw(t) = PNMF(wjt): (8)

We will omit the NMF index in further text, we will always
assume that the topic conditioned word probabilities are ob-
tained from the NMF model. For this choice, it can be seen
that: X

w2V

fw(t) = 1; (9)

and the Generalized Iterative Scaling (GIS) [8] algorithm
can be used to find solution. The update formulas for � (k+1)

w



at the k-th iteration are:

�k+1
w = �kw + log

Ê[fw]
1
M

P
t Z(t)e

P
w2V

�k
w
fw(t)fw(t)

: (10)

It can be easily verified that:

Et[fw] = P (w); (11)

so its estimate, the target value Ê[fw], should be equal to
P̂ (w), i.e. normalized local word occurrence counts n(w)=jH j.
Such a choice would assign zero target values Ê[fw] to
the words not observed in the history, which is apparently
wrong. To remedy this situation, we use features for the
words observed in the history only and add a new feature
fc(t), representing all of the words not seen in the history.
The new set of constraints is:

X

t

P (tjH)fw(t) = Ê[fw] 8w 2 H;

X

t

P (tjH)fc(t) = Ê[fc];

X

t

P (tjH) = 1:

(12)

Since the feature functions are probabilities, the following
must be satisfied:

X

w2H

E[fw] +E[fc] = 1; (13)

X

w2H

P̂ [w] + Ê[fc] = 1: (14)

Condition (13) will be satisfied when:
X

w2H

fw(t) + fc(t) = 1; (15)

so the values of fc(t) can determined.
We introduce an additional assumption, based on the

facts that the size of the history is much smaller than the
vocabulary size and that the most frequent function words
are excluded from the topic dependent model:

fc(t) >>
X

w2H

P (w); (16)

which allows us for the purpose of the target expectations
estimation to consider the feature fc(t) to be a constant:

fc(t) � �fc; (17)

so (15) and (14) can be rewritten in form which will be help-
ful in the selection of the target expectations.

X

w2H

P̂ (w) + �fc �
X

w2H

fw(t) + �fc: (18)

We use a choice of
X

w2H

P̂ (w) = max
t

X

w2H

fw(t); (19)

which guarantees the non-negativity of the feature f c(t).
We can now determine the rest:

Ê[fc] = �fc =
X

w2H

P̂ (w)

fc(t) = 1�
X

w2H

fw(t)

P̂ (w) =
n(w)P
n(w)

X

w2H

P̂ (w)

(20)

We have further modified this method to improve the
speed of convergence of the GIS algorithm. We can look at
the feature fc(t) as filler feature, so we replace the condition
15 by:

fc(t) +
X

w2H

fw(t) = fmax � 1: (21)

A filler feature is a common technique used to satisfy the
requirement of GIS that for any value of the argument, the
sum of all feature values is a constant. In our experiment,
we choose the value of �fc and then determine the value of
fmax from (21). The second equation of (20) then needs to
be changed to:

fc(t) = fmax �
X

w2H

fw(t) (22)

The described method may produce inconsistent con-
straints, since there is no guarantee that there is any dis-
tribution P (t) which will produce the target expectations.
Therefore, there should be a hard limit imposed on the num-
ber of iterations.

4. RESULTS

Experiments were performed in the context of the Aristo-
tle project [9] conducted at CAIP. In this project, we used
the IBM ViaVoice speech recognition system for automated
transcription of recorded lectures. The recognizer’s vocab-
ulary was extended to cover the specific subject (Biology
101). The nature of the speech used in the lecture presenta-
tions is more spontaneous than in read speech and exhibits
distinct content word patterns in contexts beyond the reach
of trigrams.

A trigram and an NMF model [1] were trained on a bi-
ology course textbook (total 600K words, vocabulary 10k
words). They were linearly interpolated with the trigram
model for general English distributed with ViaVoice (vo-
cabulary 60K words). We chose the number of latent topics



to be R = 300. The resulting factor Q had 322k non-zero
elements (when a threshold was applied).

Transcriptions of recorded biology lectures were divided
into two sets. The first one (12K words), was used as a
held-out set to estimate the value of �fc. The second part
(13K words) was used as a test set to measure the perplex-
ity gain. The choice of �fc does not seem to be critical as
far as the perplexity improvement is considered, as can be
seen in figure 1. But it has a significant effect on the speed
of the convergence, so lower values are desired. We have
used �fc = 0:3, which maximizes the perplexity gain on the
held-out data. Table 1 shows perplexity gains for the orig-
inal method of topic weight computation and the presented
method with exponential models.

Perplexity held-out test set
trigrams only 227.58 257.64

trigrams & NMF 194.52 209.37
trigrams & epx. NMF 184.65 196.27

Table 1. Perplexity improvements
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Fig. 1. Perplexity versus estimate �fc

As far as the complexity is concerned, the convergence
is rather slow ( about 40 iterations are needed). But it should
be noted that the number of constraints and thus number of
parameters is small, typically less than ten, so the cost of
each iteration is reasonable.

5. CONCLUSION

We have shown that the perplexity of the NMF model can
be improved when exponential models are employed to es-
timate the topic weight probabilities. Use of this method re-
sults in a 6.2% improvement over the previously used method.

The total perplexity gain of the NMF model over the trigram
model is 24 %.

The cost associated with the use of NMF the model, par-
ticularly when the exponential model based topic weight es-
timation is used, prevented us from using the model directly
in the speech recognition system. When the model was used
for N-best rescoring, the recognition accuracy improvement
was negligible. As a next step, we will try to use the NMF
model more tightly in the recognition search algorithm.
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