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ABSTRACT

The probabilistic union model is improved for continuous speech
recognition involving partial duration corruption, assuming no
knowledge about the corrupting noise. The new developments
include: an n-best rescoring strategy for union based continuous
speech recognition, a dynamic segmentation algorithm for
reducing the number of corrupted segments in the union model,
and a combination of the union model with conventional noise-
reduction techniques to accommodate the mixtures of stationary
noise (e.g. car) and random, abrupt noise (e.g. a car horn). The
proposed system has been tested for connected-digit recognition,
subjected to various types of noise with unknown, time-varying
characteristics. The results have shown significant robustness for
the new model.

1. INTRODUCTION

This paper studies noisy speech recognition assuming that there
is no knowledge about the noise, except that the noise isshorter
than the speech utterance. We term this a partial temporal (or
partial duration) corruption. Partial temporal corruption may be
caused by time-limited or time-selective noise, for example, a car
horn, a shut door, random channel impulses, click sounds from a
keyboard or any type of burst noise occurring during the
utterance and affecting only certain parts of the speech signal.
There may be two different ways to deal with this type of noise
for speech recognition. Firstly, we may use the conventional
noise-reduction techniques to remove the noise from the signal,
or to adapt the model to the noisy observations. However, this
may prove difficult because these techniques usually require
certain knowledge such as the spectral or cepstral characteristics
of the noise, and these can be difficult to estimate given the
variety, unpredictability and nonstationary nature of the abrupt
noise as mentioned above. Alternatively, we may base the
recognition mainly on information from the clean parts of the
signal, by ignoring the noisy parts, or by making these parts play
a less significant role. This recognition is possible due to the
redundancy of the temporal characteristics of speech. This
method is of interest because no knowledge is required for the
noise, except its location. A better system may be a combination
of these two methods, i.e., using the noise reduction technique to
remove the noise with a known or trainable characteristic, and
exploiting the redundancy in the speech signal to get around the
noise with an unknown or time-varying nature. This paper is
focused on the second method, but we use a simple example to
demonstrate the advantage of combining the two methods.

Speech recognition, given that only partial temporal/spectral
features are reliable, has been discussed previously in the context
of missing feature theory (see, e.g. [1]-[5]). Instead of requiring a
detailed knowledge of the noise for clearing the corrupted
features, the missing feature method requires only a labelling of
every feature as reliable or corrupt, for removing the unreliable
features from recognition. Unfortunately, locating the corrupted
data itself can be a difficult task. Recent studies have suggested
that the unreliable data may be identified by explicitly measuring
the local signal-to-noise ratio (SNR), based on a running estimate
of the local noise spectrum via spectral subtraction [3][4]. This
method performs well when the corrupting noise is stationary.
For unknown or nonstationary noise, Seltzeret al. [5] have
suggested that some characteristics of the speech signal itself,
such as the harmonic nature of voiced speech, may be exploited
for identifying the corrupted time-frequency regions.

For dealing with unknown, nonstationary noise, we have recently
studied a new approach, i.e. the probabilistic union model [6-8].
Unlike the missing feature method, the union model does not
require the identity of the noisy data, instead, it combines the
local information based on the union of random events, to reduce
the dependence of the model on information about the noise. The
union model has been previously applied to the combination of
sub-band information for speech recognition, assuming that the
unknown corruption is localized in certain areas of the frequency
band [6]. The present research considers the corruption localized
in the time duration, which is not necessarily band-limited. A
preliminary study of this, for isolated-word recognition, has been
presented in [7]. The present paper deepens this study. In
particular, we describe several new advances in this model. The
first advance is an n-best rescoring strategy for incorporating the
union model into continuous speech recognition. The second
advance is a dynamic segmentation algorithm for reducing the
number of corrupted segments in the union model. A further
advance is a combination of the union model and conventional
noise compensation methods, for dealing with a mixture of
stationary noise and unknown burst noise. In the following we
begin with an overview of the union model, and then describe the
improvements, followed by an experimental evaluation.

2. THE UNION MODEL

Assume that in speech recognition a speech utterance can be
represented by a sequence of short-term spectral vectors (i.e.
frames) ),,,( 21 TxxxX ÿ= , where each frame tx characterizes
the temporal spectrum of speech at timet . The presence of a



time-limited or time-selective noise can cause some of thetx to
be corrupted. Thus, we face the problem of how to calculate the
probability for X , given that some of the frames may be noisy.
The idea of the missing feature method is that the acoustic
mismatch due to the noise can be effectively reduced by simply
ignoring the strongly affected features. However, because of the
uncertainty of the noise, the identities of the corrupted frames are
unknown. The probabilistic union model is a method that can be
used to select usable features from a given feature set, without
requiring the identity of the corrupted features.

The union model deals with the uncertainty of the corrupted
frames by combining the subsets of the frames using the
inclusive “or” (i.e. disjunction) operator. Let )(XP be the
probability of the observation sequenceX . With the union
model, this probability can be expressed in a general form as
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where the symbol∨ represents the inclusive “or” operator,
which is applied to combine all possible subsets MTttt xxx −�21

of )( MT − frames within ),...,,( 21 Txxx , and M is called order
of the model, with a value 10 −≤≤ TM . For example, in the
case with four frames ),,,( 4321 xxxx , the union model
probability )(XP can take four possible forms, corresponding to
order 210 ,,M = and 3, respectively:

M=0: )()( 4321 xxxxPXP = (2)

M=1: )()( 432431421321 xxxxxxxxxxxxPXP ∨∨∨= (3)

M=2: )()( 434232413121 xxxxxxxxxxxxPXP ∨∨∨∨∨= (4)

M=3: )()( 4321 xxxxPXP ∨∨∨= (5)

A union model of order M is suited for accommodating a
maximum of M noisy frames, in terms of leaving at least one
subset of )( MT − frames in the model not affected by the noise.
To illustrate this, use the above example with order 2, assuming
two corrupted frames with unknown identity. The union
probability )(XP for order 2=M can be approximated as
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where we have omitted the terms corresponding to the joint
probabilities between the ji xx ’s, assuming that these are small
and can be neglected in comparison to the other terms [6]. As
indicated in (6), the union model includes the probabilities of all
possible combinations between two frames, and thus it includes
the probability for the remaining two “clean” frames, providing
correct information about the probability ofX . The probability
containing only the clean frames should usually dominate the
probability )(XP for the correct model, because of small
mismatch between the model and data. As such, recognition can
be based on the union probability )(XP , and hence no
information is needed for the identity of the two noisy frames.

The above union model can be implemented based on the HMM
techniques. To retain the inter-frame correlation, as well as to

reduce the number of combinations involved in computing the
union probability (1), we model the segments instead of frames.
For each test frame sequence ),...,,( 21 Txxx , we first convert it
into a sequence of segments ),...,,( 21 Nzzz , where each segment

nz consists of the same number of consecutive frames, and then
compute the union probability for the segments. Given the state
sequence ),,,( 21 TsssS ÿ= associated with the frame
sequence, the segment union probability can be approximated as
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where the summation is over all possible combinations ofN
values ),,1( Nÿ taken MN − at a time, and )|( SzP n is the
probability of the segment nz , defined by
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where )(xbi is the frame-based observation probability distribu-
tion in state i. Because local frame corruption within a segment
affects the probability of the segment (i.e. (8)), a segment is
considered to be noisy if part or all of its frames are noisy.

3. IMPROVEMENTS

The above model, (7) and (8), has been previously applied to
isolated-word recognition [7]. In recognition, we assumed that
the word-based state sequence, required for calculating the union
probability (7), can be derived by using the standard Viterbi
algorithm, even though there may be some noisy frames in the
observation sequence. Our experiments have indicated that this
appears to be effective as well as being simple. To apply the
above model to continuous speech recognition, our first
improvement is to adopt a two-pass, n-best rescoring approach.
In the first pass, the HMMs are applied to generate n-best
sentence (i.e. state sequence) alternatives by using the Viterbi
algorithm. In the second pass, the union model is applied to the
segment probabilities, associated with each hypothesized state
sequence, to produce a union probability on which the final
recognition decision is based. In rescoring, the capability of the
union model for ignoring the strongly corrupted data is exploited
to reduce the effect of the corrupted segments on recognition.

As described above, modeling segments of frames instead of
individual frames is desirable to retain the discriminative
information. The simplest way for this segmentation is to divide
the test observation sequence uniformly intoN segments, each
segment corresponding to a specificnz . A drawback of this
method is that, for example, when there are some noisy frames
that are shorter than a segment and lying across a border of two
segments, then both the segments will be affected by the noise.
Fig. 1 shows another example in which noisy frames shorter than
two segments can affect three segments due to the fixed-border
segmentation. Our second improvement is therefore a dynamic
segmentation method, which adjusts the origin of the segments
for each utterance such that only the smallest number of
segments may be affected by the noise, as illustrated in Fig. 1.
This is accomplished based on a maximum-probability criterion.
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Fig. 1. Top: a frame sequence with• representing noisy frames.
Middle: uniform segmentation with three segments affected by
the noise. Bottom: dynamic segmentation with only two
segments affected by the noise.

Denote by )( 1zΓ the frame time that defines the origin of the
first segment and hence the borders of all the segments. We then
can write the union probability as a function of )( 1zΓ , i.e.

))(,|( 1zSXP Γ , for a given segmentation. In recognition we
search for the )( 1zΓ to maximize this probability over the range
of the frame time (1,L), whereL represents the length of each
segment. As shown in Fig. 1, as )( 1zΓ is increased, the last
segment Nz moves back to the beginning of the frame sequence,
so there is no information lost. We call this method maximum-
probability segmentation, in contrast to uniform segmentation. In
the experiments we have tested both methods. It was found that
they produced the same recognition accuracy for clean
utterances. However, when noises were present, the maximum-
probability segmentation method outperformed the uniform
segmentation method, especially for the low SNR conditions.
The maximum-probability segmentation method was used to
produce the results presented in Section 4.

A further improvement is the combination of the union model
with conventional noise-reduction techniques. So far we have
assumed no prior knowledge about the times of occurrence and
the characteristics of the noise. This is typical for random, abrupt
noise. However, the real-world noise may be a mixture of
stationary noise and abrupt noise. For stationary noise, with
reasonably sufficient observations, it is possible to obtain an
estimate of the noise statistics. Thus, we may build a system in
which the union model and some conventional noise-reduction
techniques are combined, to deal with this type of mixed noise.
The stationary noise component may be removed, for example,
by spectral subtraction or noise compensation, and the remaining
unknown burst noise component can then be dealt with by the
union model. An example system will be described in Section 4.

4. EXPERIMENTS

The TIDigits connected digits database was used for the experi-
ments. This database contains a total of 6196 test utterances for
speaker-independent connected digit recognition. Each test
utterance may contain a string of 2, 3, 4, 5 or 7 digits, assuming
no advance knowledge of the number of digits in an utterance.
The speech was sampled at 8 kHz, and divided into frames of
256 samples. Each frame was featured using a 20-element vector,
including 10 mel-frequency cepstral coefficients and their first-
order delta parameters. Each digit was modeled with a 10-state
HMM trained on clean training data, with each state containing
eight mixture Gaussian densities. A silence HMM with one state

was also built to account for the silences surroundingeach
utterance and the optional silences between digits. These HMMs
were used to produce the state sequence for the union model, and
also served as the baseline system for comparison.

As shown in (7), there are two parameters in the union model,
i.e., the number of segments for each utterance,N , and the order
of the model, M . We have tested the model with different
lengths for a segment, to search for a balance between the noise
localization and linguistic discrimination. We found that a
segment length around ten frames (about 160ms) was suitable.
Given the length of the segment, the number of segmentsN can
be variable across utterances with different duration. As such, it
would be more convenient to calculate the relative orderNM .
A relative order of 0.2, for example, may accommodate up to
20% of the segments in each utterance to be corrupted. As
described earlier, we used an n-best rescoring strategy for
continuous speech recognition. In all the experiments, we limited
the number of the rescored alternatives,n , to 50.

Firstly, we tested the models for clean utterance recognition.
Table I presents the string accuracy obtained by the union model
applied to rescore the top 50 string alternatives produced by the
Viterbi algorithm, along with the accuracy by the baseline HMM.
The n-best accuracy (i.e. the rate that the correct string is
contained in the n-best alternatives) is also included in the table.
As expected, the performance of the union model decreased as
the order was increased, because of the disjunction between the
clean segments. In practice, we need a high order to
accommodate as many noisy segments as possible, but a low
order to obtain an acceptable performance for clean speech
recognition, i.e. a balance between robustness and clean speech
performance. We have found that for connected digit recognition
an order 2.0=NM provides a good balance. Therefore in the
following we use this order for further experiments involving
noise corruption. As shown in Table I, this order offered a string
accuracy of about 94% for clean utterance recognition.

Next, we tested the union model assuming that each utterance
involved a partial temporal corruption. Four different types of
real-world noise, a bell, a door slam, a telephone ring, and a
gunshot, were used to corrupt the utterances. The noise was
additive, and the SNR was calculated relative to the part of
speech where the noise was added. For each utterance, the
corruption was centered at one of the five positions: beginning,
middle, end, a quarter’s position and three quarter’s position,
which was chosen randomly foreach utterance. The duration of
the noise was 10% and 20%, respectively, of the duration of the
speech utterance. Table II presents the average string accuracy, as
a function of the SNR, averaged over all the noise types. We see
that the union model significantly improved upon the baseline
model throughout all the noise conditions. We also see that there
is still a large gap between the n-best accuracy and the union
model accuracy. Note that for a 5-, 6- or 7-digit utterance, a 20%
duration corruption may affect the duration of a whole word or
longer. This can cause the information of a whole word to be
lost, which is difficult to recover without context knowledge.
Further improvement may be obtainable by combining with a
language model, for recognition of a text sentence.



Table I. String accuracy (%) for clean utterances

Union model
Relative order (M/N)

0.0 0.1 0.2 0.3 0.4

Baseline
HMM

n-best
(n=50)

97.53 96.35 94.14 84.76 74.73 97.53 99.95

Table II. String accuracy (%) with noise corrupting the duration
of each utterance by 10% and 20%, respectively

Union model Baseline HMM n-best (n=50)SNR
(dB) Corruption

10% 20% 10% 20% 10% 20%

10 92.27 88.83 89.20 82.90 99.71 99.31

0 87.62 81.34 76.55 60.51 98.29 96.16

−10 80.63 62.90 61.51 39.14 93.92 83.15

We further conducted experiments by introducing multiple
duration corruptions into a single utterance. In particular, we
assumed that the noise occurred twice at different times within an
utterance, each occurrence causing a local temporal corruption.
The times at which the noise occurred were any two of the five:
beginning, middle, end, a quarter’s position and three quarter’s
position of the speech utterance, chosen randomly for each
utterance. Each occurrence of the noise corrupted about 10% of
the duration of the speech utterance. Table III presents the
results, averaged over the four types of noise as described above.

Table III. String accuracy (%) with two noise corruptions at
different times in the utterance, corrupting the duration of each

utterance by a total of 20%

SNR
(dB)

Union
model

Baseline
HMM

n-best
(n=50)

10 91.20 85.17 99.56

0 83.39 59.05 95.35

−10 62.81 31.63 81.52

Finally, we tested the combination of the union model with
conventional noise compensation for recognizing noisy
utterances involving both stationary noise corruption and
unknown burst noise corruption. The stationary noise was a car
noise, and the burst noise was a car horn, which occurred at a
random time within an utterance, lasting for about 10% of the
duration of the utterance and simulating a further unknown
unexpected corruption occurring to the utterance. The SNR of
the stationary noise and burst noise were 10 dB and 0 dB,
respectively, which were calculated separately relative to the
clean speech data. To reduce the stationary noise, we assumed
that we had the models trained in the car environment, so that the
mismatch between the model and data, due to the existence of the

Table IV. String accuracy (%) with combined noise
compensation and union model for mixed stationary noise (car,
SNR=10 dB) and unknown burst noise (a car horn, SNR=0dB)

Union model Baseline HMM

No compensation 36.27 29.34

With compensation 79.52 60.23

stationary noise, could be reduced. While we assumed
knowledge about the occurrence of the stationary noise, we
assumed no knowledge about the occurrence of the car horn
during the utterance. Table IV presents the results, showing the
advantage of the combination of the union model and noise
compensation technique for dealing with the mixed noise.

5. SUMMARY

This paper introduced our recent efforts in enhancing the
capability of the probabilistic union model for continuous speech
recognition involving partial duration corruption. The new
developments include an n-best rescoring strategy for union
based continuous speech recognition, a dynamic segmentation
algorithm for reducing the number of noisy segments in the
union model, and a combination of the union model with
conventional noise-reduction techniques. The improved model
has been tested for connected digit recognition subjected to
various types of abrupt noise with unknown, time-varying
characteristics, and has shown significant noise robustness.
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