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ABSTRACT

We propose a new vein of feature vectors for robust speech
recognition that use denoised wavelet coefficients. Greater
robustness to unexpected additive noise or spectrum distor-
tions begins with more robust acoustic features. The use
of wavelet coefficients is motivated by human acoustic pro-
cess modelling and by the ability of wavelet coefficients to
capture important time and frequency features. Wavelet de-
noising accentuates the most salient information about the
speech signal and adds robustness. We show encouraging
results using denoised cosine packet features on small-scale
experiments with the TIMIT database, its NTIMIT counter-
part, and low-pass filter distortions.

1. INTRODUCTION

Current speech recognition systems perform well when tested
on data similar to that used for training, however the lack of
robustness of recognition systems continues to be a serious
obstacle to practical speech recognition[1].

Speech recognition systems represent the speech wave-
form as feature vectors. A common set of feature vectors
are some flavor of cepstral coefficients, such as Mel filter
bank cepstral coefficients(MFCC), or LPC cepstral coeffi-
cients [2]. Acoustic and linguistic models are then used with
the features to estimate what the speech waveform said.

Cepstral coefficients are a mature approach to feature
vectors, but provide limited robustness, as evidenced by the
difficulty of state-of-the-art systems to adapt to noise and
distortions.

We propose a new vein of feature vectors, wavelet coef-
ficients, to improve speech recognition robustness. Using
wavelet coefficients is motivated by modelling of human
acoustic processes and by the relationship of time-frequency
coefficients to the Mel filterbank. Denoising theory and
practice has shown that wavelet features can be robust to
added noise and distortions.

This work was done while visiting AT&T Labs-Reearch.

The wavelet coefficients capture time and frequency lo-
calized information about the speech waveform that is im-
possible to obtain with a Fourier spectrum. Denoising the
wavelet coefficients makes robustness part of the system.
By including more localized time and frequency informa-
tion, and by using wavelet denoising, we expect to be more
robust to noise and spectrum distortions than cepstral co-
efficients. Encouraging results are shown in section 5 on a
small-scale experiment with the TIMIT and NTIMIT database.

2. PREVIOUS WORK

Wavelets and time-frequency methods have been shown to
be effective signal processing techniques over the last two
decades for a variety of problems. In particular, wavelets
have been successfully applied to denoising tasks and as ro-
bust features [3].

There has been recent interest in using the wavelet trans-
form in speech recognition. One category of such papers, [4,
5, 6] uses a wavelet transform on the speech signal, com-
putes the subband energies, and then uses these subband en-
ergies to replace Mel filterbank subband energies. This ap-
proach is slightly different from using the Mel filterbank in
that the subband divisions induced by the wavelet transform
are different from those in the Mel filterbank. The time in-
formation in the wavelet subbands, however, is lost into the
subband energies. Sarikaya [5] uses a wavelet-packet tree
that is a close approximation of the Mel-frequency division
using Daubechies’ 32-tap orthogonal filters. Our proposal
differs in that we use the actual wavelet coefficients, and
not the subband energies. This retains the time information.
Furthermore, we denoise the wavelet coefficients to focus
the features on the more salient information and improve
robustness.

Another category of prior work in speech recognition
that uses the wavelet transform is to apply it as an alternative
to the cepstrum: Mel filterbank subband energies are com-
puted, the log is taken, and then an inverse wavelet trans-
form is performed [7, 8, 9].



3. WAVELETS AND WAVELET PACKETS

A wavelet expansion of a signal can be viewed as a tree ex-
pansion of recurrent low-pass and high-pass branches, with
each filter followed by downsampling by a factor of two [10].

A wavelet transform expands only the low-pass branches
of the tree, mapping N time samples into N wavelet coef-
ficients. A wavelet packet transform expands the tree com-
pletely, mappingN time samples into NlogN wavelet coef-
ficients. One can choose a wavelet packet tree pruning that
results in an orthonormal basis of N coefficients that repre-
sent the signal in some optimal way, such as the minimum
entropy representation.

The prototypical wavelet is the Haar wavelet, given by
the low- and high-pass filters f1=p2; 1=

p
2g and f1=p2;�1=p2g.

Different filters (i.e., wavelets) may be used depending on
the desired properties of the filterbank.

4. WAVELETS AND SPEECH

We propose to use an orthonormal set of the wavelet packet
decomposition of the original time signal as features. We
use the actual wavelet packet coefficients and not subband
energies. In our experiments we used a local cosine packet [10]
decomposition because the cosine packets form visually good
matches to the speech signals and so we expect the cosine
packet coefficients to represent the underlying information
well.

There are several reasons why wavelet coefficients are a
good approach to represent speech features for robust recog-
nition. One physical model of the cochlea [11] suggests that
it acts as a continuous wavelet transform in that different
portions of the membrane respond to different frequency ex-
citations logarithmically. Secondly, the Mel filterbank is a
mature technology because it does work well. The subbands
in the Mel filterbank are similar to those in wavelet decom-
positions in that both increase logarithmically in size as the
frequency increases. Finally, wavelet (packet) decomposi-
tions are extremely successful in other scientific areas for
denoising.

5. EXPERIMENT

We performed a small-scale experiment on the downsam-
pled 8 kHz TIMIT and NTIMIT database, using only data
from sentence 1 of region 1 (all speakers, mixed genders),
yielding 1500 training phones and 436 test phones. We
considered 40 phoneme classes, of which 26 appeared in
this data set. We compared the adaptively denoised cosine-
packet coefficients (CP) to standard mel-filterbank cepstral
coefficients (MFCC).

The number of data points from each phone class in the
test set is shown in Fig. 1.
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Fig. 1. Number of data points from each phone class in the
test set

We designed the experiment to be as simple as possible
to control the number of variables and effects. No informa-
tion was used from outside the window given for a phone,
thus there was no context-dependency nor were delta cep-
stral coefficients used. Both systems were trained only on
the clean TIMIT data.

The feature vectors of the test phones were classified
using the 1-Nearest Neighbor algorithm (1-NN) with Eu-
clidean distance. 1-NN is not expected to be the optimal
classification algorithm for phoneme recognition, but 1-NN
is suitable for comparing the feature vectors without bias-
ing the comparison by using a classifier known to work well
with MFCC feature vectors. The 1-NN is known to perform
well over a large class of problems and does not assume an
underlying model (such as gaussianity) about the data.

Each phone was taken as a 32 ms (256 samples) time
window centered around the center of the phone (we used
the hand-segmented information available with the TIMIT
database). If a phone was shorter than 32 ms, it was ze-
ropadded. Then, we filtered each phone’s time signal with
the pre-emphasis filter 1� :97z�1 and multiplied the result
by a hamming window.

After that, for the wavelet CP analysis, we computed the
256 orthonormal cosine packet coefficients for each phone
(using a basis experimentally optimized for discriminating
silence). For each phone (training or test), we implemented
standard wavelet denoising with a hard threshold [3]: we
sorted the coefficients by magnitude and set to zero all but
the top m coefficients, where m was a parameter we ex-
plored. Then we classified the test phones using the training
phones and 1-NN.

For the MFCC analysis, after pulling out the centered
32 ms (256 time samples), zeropadding if necessary, pre-
emphasis filtering and multiplying by the hamming window,
we began the MFCC analysis by taking the magnitude of the
fourier transform of each phone’s time signal. Then we cal-
culated the mel filterbank subband energies and computed
the cepstrum. The cepstrum coefficients were normalized
per sentence and then the mean was subtracted.



6. RESULTS

The results for the CP analysis depend on the number of
coefficients not thresholded to zero. We experimented with
keeping 80 to 248 coefficients (the rest of the coefficients
are set to zero, and the classification is always done in the
original 256 dimensions). In Fig. 2 we show the CP error
rate as a function of the number of coefficients kept. The
experimental results are noisy, but suggest a trade-off be-
tween thresholding out enough noise (keeping fewer coeffi-
cients) and retaining enough information (keeping more co-
efficients). Also, the classification was done in the original
256-D space (denoised coefficients are set to zero) and the
small size of the training set undoubtedly had a worsening
effect as the number of coefficients kept was decreased.
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Fig. 2. CP error rate shown as a function of the number of
coefficients not thresholded. Circles are CP error rates on
NTIMIT data, crosses are CP error rates on TIMIT data

The best error rate on the NTIMIT data was 57.57%
wrong when 144 coefficients were kept. The best error rate
on the TIMIT data was 50% wrong when 184 coefficients
were kept. Thus, as one would hypothesize, using more
wavelet coefficients provides more information and is bet-
ter in clean conditions, but more denoising (= fewer coeffi-
cients) is better for noisy environments.

For the other results in this section, 160 coefficients were
kept in the denoising step (and the classification was done
in the original 256 dimensions).

The MFCC results were 45% wrong on the clean TIMIT
data and 62.39% wrong on the NTIMIT data. Thus the CP
feature vectors were not providing as good clean perfor-
mance but were, as theorized, able to degrade more grace-
fully in the presence of noise.

In Fig. 3 we show, for the NTIMIT data set, what per-
centage of each phone class was estimated correctly by CP
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Fig. 3. Percentage correct for each phone class on the
NTIMIT data, dotted line is CP, solid line is MFCC

and MFCC. Also, in Fig. 4 we plot the most likely class to
be confused with each true class by MFCC and CP. These
two figures show that the MFCC and CP methods perform
differently over the classes and tend to confuse the classes
differently, implying that the methods are thinking differ-
ently about the data.
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Fig. 4. Actual class plotted against the class most often con-
fused with for the NTIMIT test set, circles represent cosine
packet analysis and crosses represent MFCC features

We also experimented with lowpass filtering each test
signal with a butterworth filter with cut-off frequency of 4
kHz. The results, shown in Table 1, show that the error in-
creases less for the CP features than for the MFCC features.



full spectrum low-pass filtered speech
CP TIMIT .5046 .6078
MFCC TIMIT .4500 .5711
CP NTIMIT .5849 .6055
MFCC NTIMIT .6239 .6927

Table 1. Table with error rates for full spectrum and low-
pass filtered speech

7. FUTURE WORK

This paper has proposed the use of wavelet coefficients for
feature vectors and shown promising robustness results on a
small experiment. Larger experiments need to be carefully
designed to determine if wavelet coefficients can be a prof-
itable and robust representation. There are also open the-
oretical and experimental questions of which wavelet and
which basis are best for speech; best basis algorithms may
be helpful [12].

We expect that a larger training set will have a posi-
tive effect on the ability to classify using denoised wavelet
features, as such a high dimensional space was only very
sparsely populated in our small-scale experiment.

8. CONCLUSIONS

Cepstral coefficient feature vectors are a mature technol-
ogy that have not been shown to achieve good robustness
to noise and distortion. In this paper we have provided the-
oretical and experimental reasons to investigate the use of
wavelet coefficient feature vectors for robust speech recog-
nition.
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