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ABSTRACT tion of models for each of the individual sourcesastoring-out
Consider the case where there are two unwanted factors, speaker
and acoustic environment variations, in the training data. A sep-
“arate transform is generated for each speaké(ﬁ), and acoustic
environmentA(™. A canonical model is then built given these
transforms. This form of factorisation has advantages over stan-
dard adaptive training. For example if multiple training, or test,
‘speakers are known to be be talking in the same acoustic environ-
ment it is possible to explicitly constrain the transform to reflect
this. In addition it is possible to train prior distributions for each
of the individual factors. This form of explicit modelling allows
additional flexibility in the way that the models can be used.
Speaker independent system generatiorusing a limited num-
ber of speakers in the target noise environment it is possible to
obtain an estimate of the acoustic environment transfoxf).
Given this transform the prior transform speaker distributidWy ),
which represents the distribution, hopefully, of all speakers may
1. INTRODUCTION then befactored-into generate a speaker independent system for
the target acoustic environment domain.

Itis well known that the perceived acoustic signal is influenced by Multi-environment systems if a system for a particular speaker
many different factors. The signal varies depending on the words in multiple acoustic environments is required then the acoustic en-
being uttered (the desired variation), the speaker and the acoustiwironment transform may be factored-in given the estimate of the
environment, to name a few. When most speech recognition sys-speaker transformiw ().
tems are built there is an inherent assumption that the features exPosterior adaptation: using the data from a specific speaker in a
tracted from the signal are independent of the speaker and acoustitarget acoustic environment, a posterior distribution over the speaker
environment. However this assumption is poor. For example the and noise transform parameters may be obtained. These may then
performance of speech recognition systems degrade rapidly as thde factored-in. By using posterior distributions, rather than ML or
acoustic environment changes [1]. The standard approach adopteAP estimates, very rapid adaptation can be achieved. Further-
is to ignore this dependence on unwanted factors and to simplymore by factoring the sources fewer transform parameters should
train a system on all the data, irrespective of the acoustic environ-be required.
ment or speaker associated with the data. Recently the concept This paper presents the basic theory of acoustic factorisation.
of adaptive training [2, 3, 4] has been introduced. Here a trans- First it considers the general form of acoustic factorisation and
form is associated with each speaker/acoustic environment combidikelihood expressions that result from applying this factorisation.
nation. Usually a linear transform, such as maximum likelihood The paper then describes a particular form of acoustic factorisa-
linear regression (MLLR) [5], is used. A canonical model set is tion that uses MLLR as the speaker transform and cluster adap-
trained given these training speaker/acoustic environment trans-ive training (CAT) [3] as the noise transform. An approximate
forms. Hopefully, this canonical model set reflects variations in scheme for factoring-in the desired factor transform distributions is
the underlying signal after the effects of of the unwanted acoustic described. Finally initial experiments on a large vocabulary speech
factors, speaker and acoustic environment, have been taken inteecognition task are described.
account. During recognition a new transform is estimated for a
particular target speaker and acoustic environment. 2 ACOUSTIC FACTORISATION

The aim of this paper is to extend the concept of adaptive train-
ing so that each of the unwanted factors that affects the acousticroy the purpose of this discussion of acoustic factorisation there
signal is modelled separately. This form of individual source mod- 4re assumed to be two unwanted factors affecting the signal; an
elling will be referred to ascoustic factorisatiorand the genera-  aqditive noise with transform and speaker variations with trans-
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This paper describes a new technique for training a speech recog
nition system on inhomogenous training data. The proposed tech
nigue, acoustic factorisationattempts to explicitly model all the
factors that affect the acoustic signal. By explicitly modelling all
the factors the trained model set may be used in a more flexible
fashion than in standard adaptive training schemes. Since an in
dividual model is trained for each factor, it is possible to factor-in
only those factors that are appropriate to a particular target do-
main, for example the distribution over all training speakers. The
target domain specific factors are simply estimated from limited
target specific data, for example the target acoustic environment.
The theory of this new approach for a particular speaker and en-
vironment transforms is described. Initial experiments on a large
vocabulary speech recognition task are presented.




We-r We W1 Speaker a restricted version of the extended SAT (ESAT) training scheme
described in [4]. The relationship to ESAT training is illustrated
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The estimation of the factored transforms require simple changes
to standard linear transformation schemes. The position in the
noise eigenspack is a modification to the standard CAT scheme
using transformed cluster means{‘™ = Ap(?™), and “bias
corrected” observations); = o; — b. The estimation of the
speaker transformW, is a simple modification to the standard
MLLR estimation scheme. The estimation of the MLLR trans-
form is based on the transformed megn= M@™ . As the
or) = N estimation of the position in t_he noise eige_nspape is dependent_on
. Lhe speaker_tran_sfornk:, an(_j vice-versa, an |tera:jt|ve sclEeme I0(f)p|ng
etween estimating the pointin eigenspace and speaker transforms
/72 > (H p(otfa, W, )‘)> P(Q)p(A)p(W)dWdX is used. Each step is guaranteed to result in a non-decreasing train-
{Qr} A=l ing data likelihood. For further details of this factored transform
estimation scheme see [6].
In common with many “factored” transforms there are an in-
finite number of equal likelihood transforms. From equation 3 by
scaling the linear transform toA and attenuating the values of the

Fig. 1. DBN for acoustic factorisation

ance. ThusW, = W,;_; and\; = X\;—:. Given these as-
sumptions and using an HMM as the underlying canonical speech
model, the likelihood of the utteranes, .. ., or is given by

p(o1,...

where {Qr} is the set of all valid state sequences through the
model of lengthl” andg: is the state at timé along the particular
pathQ. From the training data we need to extract two distinct sets

of model parameters. A i .
Canonical model parameters this models the acoustic data given pointin eigenspaca/a the ||ke||hoqd is the same_for all values O.f .
a. This has no affect on the canonical model trained, however it is

the unwanted acoustic factor transforms. In terms of equation 1. L A,
this yields the observation likelihoog(o|q, W, A) and the state important when factonng_—nn the_ t_ransform_s. Although in th_|s work
sequence probability (duration moddB(Q,) ’ it is assumed that there is sufficient training speaker/environment

Transform prior distributions : these represent the variation over data so the prior distribution does not affect the estimates of the

the training speaker transforms,W), and acoustic environment transforms, it does determine the scaling value. The scéliisg
p(N). selected such that

The exact form of the training algorithm depends on the nature
of the transforms to represent the speakers and the acoustic envi-
ronment. In this work the acoustic environment is represented in
the form of cluster adaptive training (CAT) [3]. Thus each acous-
tic environment,n, is represented by a poit("™ in the “noise
eigenspace” spanned by the clusters. The speaker is represented as
a linear transform of the mean using MLLR [5]. Given these repre- 2.2. Transform Prior Distribution
sentations the next sections describe how the canonical model an
priors are trained and used in recognition.

a = arg max {p(aA)} 4)

wherep(A) is the appropriate sections of the speaker transform
prior given in equation 5.

%n important question is the form of the transform priors. Gaus-
sian prior distributions have been proposed for both CAT [3] and
) MLLR [7]. However, using a single multi-variate Gaussian dis-

2.1. Factoring-Out tribution to model the distribution over the speaker transforms is

In common with standard adaptive training schemes an iteratiVellmlted. For example consider the basic gender split, this should

approach is used to estimate the model parameters. Given som%esult in a 2-component Gayssian mixture model bejng r'quired
initial model set a set of speaker/environment transforms are esti- or the speaker transform prior. Hem?l the form of prior distribu-
mated. Then given the set of transforms a new canonical model sefon for MLLR considered in this work is

is estimated and the process repeated. From the forms of acoustic P D
environment and speaker transforms, and using an HMM canoni- p(W) = ZC<P> HN(Wd? M((f>7 Eff)) (5)
cal model with an\/-component Gaussian mixture model to model pri

each HMM state, the likelihood is given by

p=1

whereP is the number of components in the transform prior dis-

M tribution and D is the dimensionality of the observation vector.
plolg, W, A) = Y "IN (0, AMIT A+ b, m™)  (2)
m=1 LFor the work presented here is it assumed that there is sufficient train-

ing data for each training speaker/environment that the variances on the
(qm) _ (am) (gm) . posterior distributions are very small. Thus in training it is assumed that
whereM - [ K e Mo ] andw =[ A b ]. for speakers in environmentn p(W) ~ §(W — W) andp(\) ~
The training of the model parametéy$(¢™), (@) andc(@™ is 8(x — X(™). This allows equation 1 to be directly used in training



There is an assumption of independence between the rows of theand similarly for the covariance matrices. Here the position in the
transforms. This is consistent with the standard diagonal covari- noise eigenspace of the target domain is assume to be accurately

ance matrix assumption used in the HMM canonical model. estimatedp(A) ~ 6(A — A(™). It can be shown that
When using multiple components for the prior transform dis-
tribution there are a couple of ways of using the prior distribution. plme) = NEIP)TE(‘"”) (9)

First each of the components of the prior distribution may be sep-
arately factored-in. Using the approximate factoring-in approach
described in the next section this results in the number of compo- . (gm)
nents per state in the resultant system beitlyf. Alternatively whereg """ = [ AMTME™T 1 ]T is the standard extended
the number of components in the resultant may be restricted to bemean vector. The component prioi§™?) = () c(»),

the same as the original mod&l. For more details of schemes

to do this see [6]. For the work in this paper each prior/canonical

&;qmp)Q _ é(qm)TE(dp)é@m) + O_éqm)Q (10)

model component pairing is kept distinct. Thus there is an ad- 3. RESULTS
ditional g:omputatlonal cost when the prior distribution uses more The baseline system used for the recognition task was a gender-
than a single component.

independent cross-word-triphone mixture-Gaussian tied-state HMM
system. This was the same as the “HMM-1" model set used in the
HTK 1994 ARPA evaluation system [8]. The number of compo-
Equation 1 gives the expression for the likelihood of an observa- NeNts per state was 12 for the speech state and 24 for the “silence”
tion sequence. Unfortunately there is no simple way of evaluat- States. For more details of the baseline system see [8]. The task
ing this expression during recognition. Note that this problem Cconsidered inthis section is how to generate a speaker-independent
was ignored during the training process by assuming that thereSyStém in a target acoustic environment using limited target spe-
was sufficient training data so that the posterior distributions for Cific data.

the speakers, and noisen, transforms may be approximated as

2.3. Factoring-In
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Fig. 2. Approximate DBN for factoring-in Fig. 3. “Clean” recognition against prior complexity

To solve this problem an approximate factoring-in approach . . .

is used. The DBN for this approximate factoring-in is shown in ASAT 2] version of of the baseline clean (_onl_yasmgle factor,

figure 2. The speaker and acoustic environment are allowed tothe spe_aker, 1S assume_d_ to affect the acoustic signal) WSJ system

change every frame. This in many ways is similar to the standard was built. _The 254 training .Spea."‘e.r tra_nsform_s were used o es-

HMM training scheme which places no constraints on the speakert'm?‘t? various complexity prior distributions. Figure 3 shows the

or acoustic environment. Using this approximation it is possible to varlatlo_n of average performanpe on the .1994 development and

obtain likelihoods of producing an observation sequence. evaluation data for three covariance matrix structures and num-
ber of Gaussian components. The three covariance forms were

T No variancewherex" = 0, Diagonal where the off-diagonal
p(oL,...or) X Z Hp(otht) PQ) ©) terms ofEfi”) were set to zero, anBull Wherezfi") was a full
{Qr} A=t covariance matrix. Zero prior components indicate that an identity
For the case of factoring in the speaker transform we need to esti-matrix was used as the initial transform. Using the identity ma-

mate (assuming &-component prior) trix degrades the recognition performance by around 25¥s-
v P ing the full covariance structure with at least 2-components gave
- - - = (gmp) ood performance, yielding approximately the same performance
#(olg) = Z Z C(qmp)/\/'(o; H(qmp)7 s (amp ) @ g p y g app y p

as a gender dependent system. This indicates that the approximate

m=tp=t factoring-in approach described yields reasonable performance.

where

2This result disagress with results produced by BBN. Similar degra-

- (qgm dation in performance was observed on experiments on the Switchboard
plamr) = / op(olg, m, W, A)p(W|p)p(A\)dWdX  (8)  jatabase
R



For the second set of experiments noise was artificially addedwell the adaptation simply tuned to the 2 target domain speak-
on to the clean data The “operations room” and the “car” noises ers and degraded the other speakers performance. Where there
from the NOISEX-92 database were used. Two conditions were was a large mismatch, the Car noise, the adaptation both tuned the
then selected for training, the original training database, the cleanmodel set to the noise and target speakers. The gains from tuning
training data, and operations room noise added at 0.05, the noisyto the noise condition offset the degradation from tuning to specific
training data. Using this data a series of systems were constructedspeakers. This “adapted” performance is still about 5% relative
First acleansystem was built using the original training data. Us- worse than th&PRperformance. The performance of the simple
ing both the clean and noisy training data a multi-environment sys- noise eigenspaderoj, is also given. Other than for the clean envi-
tem, Mult, was constructed. A baseline noise eigenspg&eej, ronment this shows slight improvement over Malt system. The
was built using CAT [3] with the clean and noisy training data. The performance of acoustic factorisation is also shown. For both the
weights used to build this eigenspace were fixed, since an artificial2-component and 4-component transform prior distributions slight
database was being used and the eigenspace was only meant @ains were obtained over tiMult and Proj systems. Again the
represent noise variability. The weights were ﬁxecﬂ a 0 ]T performange was far worse in the non matched conditionl, where
for the clean data an{i 0 1 ]T for the noisy data. Finally an the noise eigenspace was not matched to the target do@ein,

acoustic factorised system was built. Again the position in the
noise eigenspace was fixed[atl 0 ]T for the clean data and

[ 0 a ]T for the noisy datad was selected using equation 4).
Using these fixed values fox models were constructed by iter-
atively estimating the speaker transform and then the model pa-
rameters. Two forms of speaker transform priors were then used
a 2-component priorf-act(2), and a 4-component prioEact(4).

4. CONCLUSIONS

This paper has described the basic concepts behind and possible
uses for acoustic factorisation. Here each of the unwanted factors
affecting the acoustic signal is separately modelled. This allows
appropriate factors for a particular target domain to factored-in as
- A ° ! required. The factors whose variations are not required for the
As an additional baseline a single-pass-retrained systerSPR, target domain are estimated for the target domain and fixed. A
was built starting with the clean system for a!l the test conditions. particular implementation of acoustic factorisation, using CAT and
These models were used to generate the lattices that were rescore,g'LLR, is described in detail. Re-estimation formulae for both

in all the experiments performed. the factored transform and canonical model estimation are given.
Simple initial experiments indicate that this is a useful research

System Operations Room Car direction. Future work will examine real inhomogenous databases
Clean] 0.025] 0.05 ] 0.025 and alternative speaker and acoustic environment transforms.
Clean 9.34 | 13.77 | 23.89 || 20.99
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