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ABSTRACT

This paper describes a new technique for training a speech recog-
nition system on inhomogenous training data. The proposed tech-
nique,acoustic factorisation, attempts to explicitly model all the
factors that affect the acoustic signal. By explicitly modelling all
the factors the trained model set may be used in a more flexible
fashion than in standard adaptive training schemes. Since an in-
dividual model is trained for each factor, it is possible to factor-in
only those factors that are appropriate to a particular target do-
main, for example the distribution over all training speakers. The
target domain specific factors are simply estimated from limited
target specific data, for example the target acoustic environment.
The theory of this new approach for a particular speaker and en-
vironment transforms is described. Initial experiments on a large
vocabulary speech recognition task are presented.

1. INTRODUCTION

It is well known that the perceived acoustic signal is influenced by
many different factors. The signal varies depending on the words
being uttered (the desired variation), the speaker and the acoustic
environment, to name a few. When most speech recognition sys-
tems are built there is an inherent assumption that the features ex-
tracted from the signal are independent of the speaker and acoustic
environment. However this assumption is poor. For example the
performance of speech recognition systems degrade rapidly as the
acoustic environment changes [1]. The standard approach adopted
is to ignore this dependence on unwanted factors and to simply
train a system on all the data, irrespective of the acoustic environ-
ment or speaker associated with the data. Recently the concept
of adaptive training [2, 3, 4] has been introduced. Here a trans-
form is associated with each speaker/acoustic environment combi-
nation. Usually a linear transform, such as maximum likelihood
linear regression (MLLR) [5], is used. A canonical model set is
trained given these training speaker/acoustic environment trans-
forms. Hopefully, this canonical model set reflects variations in
the underlying signal after the effects of of the unwanted acoustic
factors, speaker and acoustic environment, have been taken into
account. During recognition a new transform is estimated for a
particular target speaker and acoustic environment.

The aim of this paper is to extend the concept of adaptive train-
ing so that each of the unwanted factors that affects the acoustic
signal is modelled separately. This form of individual source mod-
elling will be referred to asacoustic factorisationand the genera-
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tion of models for each of the individual sources asfactoring-out.
Consider the case where there are two unwanted factors, speaker
and acoustic environment variations, in the training data. A sep-
arate transform is generated for each speaker,W(s), and acoustic
environment,�(n). A canonical model is then built given these
transforms. This form of factorisation has advantages over stan-
dard adaptive training. For example if multiple training, or test,
speakers are known to be be talking in the same acoustic environ-
ment it is possible to explicitly constrain the transform to reflect
this. In addition it is possible to train prior distributions for each
of the individual factors. This form of explicit modelling allows
additional flexibility in the way that the models can be used.
Speaker independent system generation: using a limited num-
ber of speakers in the target noise environment it is possible to
obtain an estimate of the acoustic environment transform,�(n).
Given this transform the prior transform speaker distribution,p(W),
which represents the distribution, hopefully, of all speakers may
then befactored-into generate a speaker independent system for
the target acoustic environment domain.
Multi-environment systems: if a system for a particular speaker
in multiple acoustic environments is required then the acoustic en-
vironment transform may be factored-in given the estimate of the
speaker transform,W(s).
Posterior adaptation: using the data from a specific speaker in a
target acoustic environment, a posterior distribution over the speaker
and noise transform parameters may be obtained. These may then
be factored-in. By using posterior distributions, rather than ML or
MAP estimates, very rapid adaptation can be achieved. Further-
more by factoring the sources fewer transform parameters should
be required.

This paper presents the basic theory of acoustic factorisation.
First it considers the general form of acoustic factorisation and
likelihood expressions that result from applying this factorisation.
The paper then describes a particular form of acoustic factorisa-
tion that uses MLLR as the speaker transform and cluster adap-
tive training (CAT) [3] as the noise transform. An approximate
scheme for factoring-in the desired factor transform distributions is
described. Finally initial experiments on a large vocabulary speech
recognition task are described.

2. ACOUSTIC FACTORISATION

For the purpose of this discussion of acoustic factorisation there
are assumed to be two unwanted factors affecting the signal; an
additive noise with transform� and speaker variations with trans-
form W. Figure 1 shows the dynamic Bayesian network (DBN)
that reflects the dependencies on these factors. Also, it is assumed
that the noise conditions and speaker are constant over an utter-
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Fig. 1. DBN for acoustic factorisation

ance. ThusWt = Wt−1 and�t = �t−1. Given these as-
sumptions and using an HMM as the underlying canonical speech
model, the likelihood of the utteranceo1, . . . ,oT is given by

p(o1, . . .oT ) = (1)Z
R

X
{QT }

 
TY

t=1

p(ot|qt,W,�)

!
P (Q)p(�)p(W)dWd�

where{QT } is the set of all valid state sequences through the
model of lengthT andqt is the state at timet along the particular
pathQ. From the training data we need to extract two distinct sets
of model parameters.
Canonical model parameters: this models the acoustic data given
the unwanted acoustic factor transforms. In terms of equation 1
this yields the observation likelihood,p(o|q,W,�) and the state
sequence probability (duration model),P (Q).
Transform prior distributions : these represent the variation over
the training speaker transforms,p(W), and acoustic environment
p(�).

The exact form of the training algorithm depends on the nature
of the transforms to represent the speakers and the acoustic envi-
ronment. In this work the acoustic environment is represented in
the form of cluster adaptive training (CAT) [3]. Thus each acous-
tic environment,n, is represented by a point�(n) in the “noise
eigenspace” spanned by the clusters. The speaker is represented as
a linear transform of the mean using MLLR [5]. Given these repre-
sentations the next sections describe how the canonical model and
priors are trained and used in recognition.

2.1. Factoring-Out

In common with standard adaptive training schemes an iterative
approach is used to estimate the model parameters. Given some
initial model set a set of speaker/environment transforms are esti-
mated. Then given the set of transforms a new canonical model set
is estimated and the process repeated. From the forms of acoustic
environment and speaker transforms, and using an HMM canoni-
cal model with anM -component Gaussian mixture model to model
each HMM state, the likelihood is given by

p(o|q,W,�) =
MX

m=1

c(qm)N (o;AM(qm)�+ b,Σ(qm)) (2)

whereM(qm) =
h
�(qm)

1 . . . �(qm)
C

i
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�
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�
.

The training of the model parametersM(qm), Σ(qm) andc(qm) is

a restricted version of the extended SAT (ESAT) training scheme
described in [4]1. The relationship to ESAT training is illustrated
by writing

AM(qm)�+ b =
�

λ1A . . . λCA b
� 26664

�(qm)
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...
�(qm)

C
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37775 (3)

The estimation of the factored transforms require simple changes
to standard linear transformation schemes. The position in the
noise eigenspace� is a modification to the standard CAT scheme
using transformed cluster means,�̌(qm)

c = A�(qm)
c , and “bias

corrected” observations,̌ot = ot − b. The estimation of the
speaker transform,W, is a simple modification to the standard
MLLR estimation scheme. The estimation of the MLLR trans-
form is based on the transformed mean,�̂ = M(qm)�. As the
estimation of the position in the noise eigenspace is dependent on
the speaker transform, and vice-versa, an iterative scheme looping
between estimating the point in eigenspace and speaker transforms
is used. Each step is guaranteed to result in a non-decreasing train-
ing data likelihood. For further details of this factored transform
estimation scheme see [6].

In common with many “factored” transforms there are an in-
finite number of equal likelihood transforms. From equation 3 by
scaling the linear transform toaA and attenuating the values of the
point in eigenspace�/a the likelihood is the same for all values of
a. This has no affect on the canonical model trained, however it is
important when factoring-in the transforms. Although in this work
it is assumed that there is sufficient training speaker/environment
data so the prior distribution does not affect the estimates of the
transforms, it does determine the scaling value. The scalingâ is
selected such that

â = arg max
a
{p(aA)} (4)

wherep(A) is the appropriate sections of the speaker transform
prior given in equation 5.

2.2. Transform Prior Distribution

An important question is the form of the transform priors. Gaus-
sian prior distributions have been proposed for both CAT [3] and
MLLR [7]. However, using a single multi-variate Gaussian dis-
tribution to model the distribution over the speaker transforms is
limited. For example consider the basic gender split, this should
result in a 2-component Gaussian mixture model being required
for the speaker transform prior. Hence, the form of prior distribu-
tion for MLLR considered in this work is

p(W) =
PX

p=1

c(p)
DY

d=1

N (wd;�(p)
d ,Σ

(p)
d ) (5)

whereP is the number of components in the transform prior dis-
tribution andD is the dimensionality of the observation vector.

1For the work presented here is it assumed that there is sufficient train-
ing data for each training speaker/environment that the variances on the
posterior distributions are very small. Thus in training it is assumed that
for speakers in environmentn p(W) ≈ δ(W − W(s)) andp(�) ≈
δ(�− �(n)). This allows equation 1 to be directly used in training



There is an assumption of independence between the rows of the
transforms. This is consistent with the standard diagonal covari-
ance matrix assumption used in the HMM canonical model.

When using multiple components for the prior transform dis-
tribution there are a couple of ways of using the prior distribution.
First each of the components of the prior distribution may be sep-
arately factored-in. Using the approximate factoring-in approach
described in the next section this results in the number of compo-
nents per state in the resultant system beingPM . Alternatively
the number of components in the resultant may be restricted to be
the same as the original modelM . For more details of schemes
to do this see [6]. For the work in this paper each prior/canonical
model component pairing is kept distinct. Thus there is an ad-
ditional computational cost when the prior distribution uses more
than a single component.

2.3. Factoring-In

Equation 1 gives the expression for the likelihood of an observa-
tion sequence. Unfortunately there is no simple way of evaluat-
ing this expression during recognition. Note that this problem
was ignored during the training process by assuming that there
was sufficient training data so that the posterior distributions for
the speaker,s, and noise,n, transforms may be approximated as
p(W) ≈ δ(W −W(s)) andp(�) ≈ δ(� − �(n)). This is not
possible if a distribution over the transform parameters is required
to be factored-in.
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Fig. 2. Approximate DBN for factoring-in

To solve this problem an approximate factoring-in approach
is used. The DBN for this approximate factoring-in is shown in
figure 2. The speaker and acoustic environment are allowed to
change every frame. This in many ways is similar to the standard
HMM training scheme which places no constraints on the speaker
or acoustic environment. Using this approximation it is possible to
obtain likelihoods of producing an observation sequence.

p(o1, . . .oT ) ≈
X
{QT }

 
TY

t=1

p̃(ot|qt)

!
P (Q) (6)

For the case of factoring in the speaker transform we need to esti-
mate (assuming aP -component prior)

p̃(o|q) =
MX

m=1

PX
p=1

c̃(qmp)N (o; �̃(qmp), Σ̃
(qmp)

) (7)

where

�̃(qmp) =

Z
R

op(o|q, m,W,�)p(W|p)p(�)dWd� (8)

and similarly for the covariance matrices. Here the position in the
noise eigenspace of the target domain is assume to be accurately
estimated,p(�) ≈ δ(�− �(n)). It can be shown that

µ̃
(qmp)
d = �(p)T

d �̂
(qm)

(9)

σ̃
(qmp)2
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(qm)T
Σ

(p)
d �̂

(qm)
+ σ

(qm)2
d (10)

where�̂
(qm)

=
�
�(n)T M(qm)T 1

�T
is the standard extended

mean vector. The component prior isc̃(qmp) = c(qm)c(p).

3. RESULTS

The baseline system used for the recognition task was a gender-
independent cross-word-triphone mixture-Gaussian tied-state HMM
system. This was the same as the “HMM-1” model set used in the
HTK 1994 ARPA evaluation system [8]. The number of compo-
nents per state was 12 for the speech state and 24 for the “silence”
states. For more details of the baseline system see [8]. The task
considered in this section is how to generate a speaker-independent
system in a target acoustic environment using limited target spe-
cific data.
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Fig. 3. “Clean” recognition against prior complexity

A SAT [2] version of of the baseline clean (only a single factor,
the speaker, is assumed to affect the acoustic signal) WSJ system
was built. The 284 training speaker transforms were used to es-
timate various complexity prior distributions. Figure 3 shows the
variation of average performance on the 1994 development and
evaluation data for three covariance matrix structures and num-
ber of Gaussian components. The three covariance forms were
No variancewhereΣ

(n)
d = 0, Diagonal where the off-diagonal

terms ofΣ(n)
d were set to zero, andFull whereΣ

(n)
d was a full

covariance matrix. Zero prior components indicate that an identity
matrix was used as the initial transform. Using the identity ma-
trix degrades the recognition performance by around 25%2. Us-
ing the full covariance structure with at least 2-components gave
good performance, yielding approximately the same performance
as a gender dependent system. This indicates that the approximate
factoring-in approach described yields reasonable performance.

2This result disagress with results produced by BBN. Similar degra-
dation in performance was observed on experiments on the Switchboard
database



For the second set of experiments noise was artificially added
on to the clean data3. The “operations room” and the “car” noises
from the NOISEX-92 database were used. Two conditions were
then selected for training, the original training database, the clean
training data, and operations room noise added at 0.05, the noisy
training data. Using this data a series of systems were constructed.
First acleansystem was built using the original training data. Us-
ing both the clean and noisy training data a multi-environment sys-
tem, Mult, was constructed. A baseline noise eigenspace,Proj,
was built using CAT [3] with the clean and noisy training data. The
weights used to build this eigenspace were fixed, since an artificial
database was being used and the eigenspace was only meant to
represent noise variability. The weights were fixed at

�
1 0

�T
for the clean data and

�
0 1

�T
for the noisy data. Finally an

acoustic factorised system was built. Again the position in the
noise eigenspace was fixed at

�
1 0

�T
for the clean data and�

0 a
�T

for the noisy data (a was selected using equation 4).
Using these fixed values for� models were constructed by iter-
atively estimating the speaker transform and then the model pa-
rameters. Two forms of speaker transform priors were then used,
a 2-component prior,Fact(2), and a 4-component prior,Fact(4).
As an additional baseline a single-pass-retrained system [1],SPR,
was built starting with the clean system for all the test conditions.
These models were used to generate the lattices that were rescored
in all the experiments performed.

System Operations Room Car
Clean 0.025 0.05 0.025

Clean 9.34 13.77 23.89 20.99
SPR — 11.79 16.76 12.11
Mult 9.34 12.17 17.45 17.76

Mult+MLLR 9.42 12.51 18.41 12.76
Proj 9.84 12.05 17.31 17.24

Fact(2) 9.18 11.84 17.11 16.45
Fact(4) 9.24 11.86 17.18 15.46

Table 1. Baseline system and “adapted” using 2 speakers error
rates (%) on the 1994 H1 Development Data

Table 1 shows the baseline performance of the standard sys-
tems. As expected the performance of theCleansystem degrades
as the noise level increases. TheSPRsystem’s performance de-
grades more slowly. TheMult system shows similar performance
to theSPRsystems on the Operations Room noise, but is signif-
icantly worse on the Car noise. This is not surprising since the
training data was the Operations Room noise data scaled at 0.05.

Table 1 also shows the performance of target domain adapted
systems. The target domain data consisted of the supervised adap-
tation data of the first two test speakers, one male (4q0) and one fe-
male (4q1). The first system,Mult+MLLR, used a block-diagonal
MLLR transform of theMult system to the target domain data.
This adaptation degraded the performance on the Clean and Op-
erations Room noise tasks. However on the Car noise data the
performance was reduced from 17,76% to 12.76% error rate. This
was not surprising since where theMult system was performing

3Since the WSJ0 and WSJ1 databases were recorded at different levels,
the WSJ0 databases was attenuated so as to be at approximately the same
level as the WSJ1 data (and the test data).In this paper scaling of the noise
sources have been given to allow the database to be exactly reconstructed.

well the adaptation simply tuned to the 2 target domain speak-
ers and degraded the other speakers performance. Where there
was a large mismatch, the Car noise, the adaptation both tuned the
model set to the noise and target speakers. The gains from tuning
to the noise condition offset the degradation from tuning to specific
speakers. This “adapted” performance is still about 5% relative
worse than theSPRperformance. The performance of the simple
noise eigenspaceProj, is also given. Other than for the clean envi-
ronment this shows slight improvement over theMult system. The
performance of acoustic factorisation is also shown. For both the
2-component and 4-component transform prior distributions slight
gains were obtained over theMult andProj systems. Again the
performance was far worse in the non matched condition, where
the noise eigenspace was not matched to the target domain,Car.

4. CONCLUSIONS

This paper has described the basic concepts behind and possible
uses for acoustic factorisation. Here each of the unwanted factors
affecting the acoustic signal is separately modelled. This allows
appropriate factors for a particular target domain to factored-in as
required. The factors whose variations are not required for the
target domain are estimated for the target domain and fixed. A
particular implementation of acoustic factorisation, using CAT and
MLLR, is described in detail. Re-estimation formulae for both
the factored transform and canonical model estimation are given.
Simple initial experiments indicate that this is a useful research
direction. Future work will examine real inhomogenous databases
and alternative speaker and acoustic environment transforms.
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