
RECURSIVE NOISE ESTIMATION USING ITERATIVE STOCHASTIC APPROXIMATION
FOR STEREO-BASED ROBUST SPEECH RECOGNITION

Li Deng, Jasha Droppo, and Alex Acero

Microsoft Research,
One Microsoft Way

Redmond WA 98052, USA

ABSTRACT

We present an algorithm for recursive estimation of parameters in
a mildly nonlinear model involving incomplete data. In particu-
lar, we focus on the time-varying deterministic parameters of ad-
ditive noise in the nonlinear model. For the nonstationary noise
that we encounter in robust speech recognition, different observa-
tion data segments correspond to different noise parameter values.
Hence, recursive estimation algorithms are more desirable than
batch algorithms, since they can be designed to adaptively track
the changing noise parameters. One such design based on the
iterative stochastic approximation algorithm in the recursive-EM
framework is described in this paper. This new algorithm jointly
adapts time-varying noise parameters and the auxiliary parame-
ters introduced to linearly approximate the nonlinear model. We
present stereo-based robust speech recognition results for the AU-
RORA task, which demonstrate the effectiveness of the new algo-
rithm compared with a more traditional, MMSE noise estimation
technique under otherwise identical experimental conditions.

1. INTRODUCTION

Recently, we have successfully developed a class of front-end de-
noising algorithms based on the use of a limited set of stereo train-
ing data [3, 4]. The basic version of the algorithm has been called
SPLICE, short for Stereo-based Piecewise Linear Compensation
for Environment. For most of the noisy test speech data that have
been collected and generated internally, we found that SPLICE
has been highly effective [4]. These test data seem to have devi-
ated only to a limited degree from the noisy speech in the stereo
training data, due to a wide (and expensive) coverage of the noise
conditions in the data design. More recently, we started applying
SPLICE to the AURORA2 task, which has strongly constrained
the coverage of the noise conditions in designing the stereo train-
ing data. We discovered in our earlier AURORA work that when
the training set used to obtain the correction vectors in SPLICE
are under very different noise environments than the enviroment
for the test data, the SPLICE performance often becomes undesir-
ably low [5]. One obvious solution to this mismatch problem is
to normalize, in an instantaneous-SNR-dependent manner, the test
and training environments before applying SPLICE. The effective-
ness of this “noise-mean-normalized SPLICE” (NMN) has been
demonstrated in our diagonostic experiments, where we used the
exact noise cepstral values for the SPLICE normalization and ob-
tained extremely high recognition performance in the AURORA2
task. This points to the crucial importance of accuracy of noise es-
timation in successful applications of SPLICE under serious mis-

matched conditions between the SPLICE’s training and deploy-
ment environments.

In this paper, we describe an effective recursive noise esti-
mation method using a weakly nonlinear model of the acoustic
environment. The work is built upon some recent noise estima-
tion work (e.g., [2, 7]), incorporating the new iterative stochastic
approximation technique devised to achieve high accuracy in the
Taylor series expansion of the nonlinear model. We will demon-
strate the effectiveness of our new noise estimation method for the
AURORA task using the NMN-SPLICE framework.

2. A NONLINEAR MODEL FOR ACOUSTIC
ENVIRONMENT

The parametric model in the cepstral domain for the acoustic en-
vironment used in this work is the model described in detail in
[1, 9]:

y � h+ x+C ln
�
I+ exp[C

T
(n� h� x)]

�
; (1)

where y and x are distorted and clean speech cepstral vectors, re-
spectively. n and h are cepstral vectors for the additive noise and
impulse response of convolutional distortion, respectively. C is
the discrete cosine transform matrix. To simplify the notation, we
define the vector function g(�) of

g(z) = C ln
�
I+ exp[C

T
z]
�
: (2)

The above model that relates x, y, n and h is mildly nonlin-
ear. For developing the recursive estimation algorithm, we approx-
imate this relationship by truncating the Taylor series expansion of
the nonlinearity, around an iteratively updated operating point, up
to the linear term. In this paper, we consider additive noise only,
for which h = 0. Let �x0 and n0 be the operating points for the
first-order Taylor series expansion of y. We then have:

y = x+ g(n0 � �
x

0) +G(n0 � �
x

0)(x��
x

0)

+[I�G(n0 � �
x

0)](n� n0); (3)

where the gradient has the closed form of

G(z) = Cdiag
� 1

1 + exp[CTz]

�
C
T
:



3. RECURSIVE-EM ALGORITHM WITH AUXILIARY
PARAMETERS

We first establish the statistical model for the clean speech cep-
strum (x as a random vector) as a mixture of multivariate Gaus-
sians:

p(x) =

MX
m=1

cmN (x;�
x

m
;�

x

m): (4)

The speech frames are assumed to be independent and identically
distributed. Missing data is the mixture component m, which re-
quires the use of EM-like algorithms for ML estimation. In the
work described in this paper, the noise cepstrum n is assumed to
be a deterministic (rather than random) vector, which is time vary-
ing and is to be estimated.

Recursive noise parameter estimation is a solution to the recursive-
EM optimization problem [7, 2, 8]:

nt+1 = argmax
n

Qt+1(n): (5)

The objective function Qt+1(n) above is the conditional expecta-
tion
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where Mt+1
1 = m1;m2; :::; mt+1 is the sequence of (hidden)

mixture components in the clean speech model up to time t + 1.
The objective function above in the recursive-EM algorithm differs
from the one in the conventional batch-EM — it is time indexed
and the observation sequence is used up to that time.

In the E-step, the objective function Eq.6 is simplified to
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whereConst is a term independent of noise n to be estimated. The
“occupancy” probability � (m) = p

�
mjy� ;n��1

�
above can be

computed using the linearized version of the nonlinear acoustic
environement model of Eq.3, which gives:

p(y� jm;n) = N
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�
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where the mean for the given mixture component m is

�
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and the covariance matrix is

�
y
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(The latter is clear after rewriting Eq.3 as y = [I+G(n0��
x

0 ]x+

d, where d is a deterministic term not affecting form of the covari-
ance matrix.)

In Eqs.8 and 9, n0 (and �x0 ) are the operating points for the
Taylor series expansion, which are the auxiliary parameters to be
jointly optimized with the noise parameter.

Using Eq.7 and the previously updated noise parameter, the
occupancy probability �(m) is computed using Bayes rule in the
E-step. Further, after introducing the forgetting factor �, Eq.7 al-
lows the objective function Q (ignoring constant term Const) to
be fully expressed out as
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where

Rt+1 =
MX

m=1

t+1(m)
�
yt+1��

y

m(nt+1)
�T (�ym)�1

�
yt+1��

y

m(nt+1)
�
:

The value the forgetting factor � is based on a tradeoff between the
strength of noise tracking ability (� close to zero) and the reliability
of noise estimate (� close to one).

To carry out the M-step, one can use stochastic approximation
[8, 10] to sequentially update the noise parameter. Generalizing
from [10] (Theorem 3; pg.264-265, where � = 1) and from [8]
(Theorem 3.3, pg.2561), we proved that Qt+1(nt+1) in recursion
Eq.10 is maximized (using second-order Taylor series expansion
and Newton-Raphson technique) via the following recursive form
of noise parameter updating (i.e., recursive M-step):
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In the same way as for Eq.10, we rewrite Eq.13 in a recursive
form for efficient computation:

Kt+1 = � �Kt � Lt+1; (14)

where
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4. IMPLEMENTATION USING ITERATIVE
STOCHASTIC APPROXIMATION

Eq.11, Eq.12, and Eq.14 constitute a generic recursive-EM algo-
rithm based on the general principle of stochastic approximation
and on the approximate nonlinear model of acoustic environment.
It sequentially estimates the noise vector for each frame, nt+1, us-
ing the information from its previous frames as well as from the
current frame. In this section, we will describe practical consider-
ations for implementing this algorithm.

In Eq.8, which is used in Eqs.12 and 13, the vectors n0 and�x0
are the operating points for the truncated Taylor series expansion
of the nonlinear environmental model, and need to be appropri-
ately determined. For clean speech, x, the operating points can
be set naturally at a most approrpriate mean vector in the clean
mixture speech model. Since we do not know in advance what
mixture component a speech frame belongs to, we set the operat-
ing point �x0 such that it is distributed over all mixture components
�
x

m
;m = 1; 2; :::;M , with soft weights p

�
mjyt;nt

�
.

To determine n0, we assume that the noise does not change
abruptly, and hence when a new frame, at (t+ 1), of the observa-
tion is entered into the algorithm, a most reasonable noise estimate
would be the estimate from the immediately preceding frame t.
Therefore, we set the operating point of the Taylor series expan-
sion for the noise at n0 = nt (or a smoothed version of it) in the
evaluation the g vector function and G matrix function in Eqs.12,
13, and 8.

A final consideration for improving the effectiveness of the
recursive EM algorithm is based on our earlier experience that
the accuracy of linear approximation to the nonlinear environment
model is a key factor in speech enhancement performance [6].
Since the goal of the algorithm is to estimate the noise at the cur-
rent frame at (t + 1) according to Eq.11, the operating point of
the Taylor series expansion for noise can be iteratively updated af-
ter the estimation is completed at the same time frame (t + 1).
(A smoothed version of the previous frame’s estimate nt is used
to initialize this iteration.) This generalizes the stochastic approx-
imation described in Section 3 into the new “iterative stochastic
approximation”, within the same recursive-EM framework.

Taking into account all the above implementation consider-
ations, we describe the practical algorithm execution steps below.
First, train and fix all parameters in the clean speech model: cm;�xm;
and�x

m. Then, set n1 at t = 1 to be an average noise vector based
on a crude speech-noise detector, and initialize K0 = 0. For each
t = 2; 3; :::; T in a noisy utterance yt, set iteration number j = 1

and execute the following steps sequentially:

� Step 1: Compute
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� Step 3: Compute

n
j

t+1 = n
j

t
+ � � [K

j
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�1
s
j

t+1: (17)

� Step 4: If j < J (total number of iterations), then set
n
(j+1)
t

= n
j

t+1 and increment j++. Then continue the iter-
ation by going to Step 1. If j = J , then increment t++ and
start the algorithm again by re-setting j = 1 to process the
next time frame until the end of the utterance t = T .

In Eq.17, � is an adjustible parameter that controls the updat-
ing rate for noise estimate. In our implemenetation, � is set to be
inversely proportional to a crude estimate of the noise variance for
each separate test utterance. � is also a function of J .

Several approximations have been made in the implementa-
tion of the above algorithm to significantly speed up computation.
Among these approximations are: 1) a scalar-version implementa-
tion to avoid any matrix inversion; 2) approximation of t(m) to
be either zero or one for each separate frame t; 3) use of Euclidean
distance to determine m0 that gives a single t(m0) = 1; and 4)
use of the same m0 for all within-frame iterations j � J .

5. NOISE-ROBUST SPEECH RECOGNITION

The recursive-EM based noise estimation algorithm described in
this paper has been rigorously evaluated in the AURORA2 task
[5]. Our basic denoising technique is SPLICE [3, 4], exploiting the
avalability of stereo data (clean and noisy) in set-A of the database.
The noise estimate is used in an enhanced, noise-mean-normalized
(NMN) version of SPLICE, which effectively handles mismatched
distortion conditions between set-A and set-B/C [5].

5.1. A baseline NMN-SPLICE system

A baseline noise estimation method used to evalute the new algo-
rithm is direct computation of the traditional MMSE noise estimate
by numerically carrying out the following integration:

n̂ =

Z
np(njy)dn =

R R
np(yjx;n)p(x)p(n)dxdnR R
p(yjx;n)p(x)p(n)dx dn

, (18)

where the clean-speech prior p(x) is a pre-trained Gaussian dis-
tribution. The noise prior p(n) in Eq.18 is also a Gaussian distri-
bution, whose mean and variance are estimated from some noise
frames in individual noisy test utterances. p(yjx;n) is computed
using a nonlinear environmental distortion model in the log mel-
spectral domain. The integrands in both the numerator and denom-
inator of Eq.18 have been computed in closed functional forms.
However, the complexity of these closed forms due to the non-
linearity in p(yjx;n) makes it impossible to carry out analytical
integrations in Eq.18. Numerical integration is a most straightfor-
ward implementation, which we adopt for establishing a baseline
NMN-SPLICE system.



5.2. Recognition results on the AURORA2 task

The numerical integration technique produces noise estimates in-
dependently for each noisy speech frame and for each mel-frequency
component. The estimated noise is then used in NMN-SPLICE
[5] to perform denoising for noise-robust speech recognition. The
recognizer is a standard HTK system specified by the AURORA2
task. This baseline NMN-SPLICE system is used to evaluate the
effectiveness of the new recursive-EM noise estimation technique
under the otherwise identical experimental conditions.

Comparative recognition results are shown in Table 1 for the
full AURORA2 evaluation test data. Sets A/B each consists of
1101 digit sequences for each of four noise conditions and for each
of the 0dB, 5 dB, 10dB, 15dB, and 20dB SNRs. The same is for
Set C except there are only two noise conditions. The recogni-
tion rates (%) in Table 1 are the average over all the noise condi-
tions and over all the five SNRs. From Table 1, the new recursive-

Methods Train-Mode Set A Set B Set C Overall

Numerical multicond. 88.97 87.89 87.80 88.30
Integration clean-only 85.33 85.75 83.74 85.18

Recursive multicond. 91.49 89.16 89.62 90.18
EM clean-only 87.82 87.09 85.08 86.98

No multicond. 87.82 86.27 83.78 86.39
Denoising clean-only 61.34 55.75 66.14 60.06

No Noise multicond. 91.34 84.98 86.05 87.74
Normaliz. clean-only 87.56 84.07 81.81 85.01

Table 1. Comparison of AURORA2 recognition rates (%) for the
HMM systems using four different front-ends: 1) NMN-SPLICE
using a baseline numerical-integration method for MMSE noise
estimation; 2) NMN-SPLICE using the new recursive-EM method
with iterative stochastic approximation; 3) AURORA-supplied
standard MFCCs with no denoising; and 4) SPLICE with no noise
normalization from training to test sets

EM method with iterative stochastic approximation performs bet-
ter than the numerical integration method for noise estimation,
within the same NMN-SPLICE system for cepstral enhencement.
They are both significantly and consistently better than the ear-
lier version of SPLICE with no noise normalization from training
to test sets, and better than the standard MFCCs supplied by the
AURORA task using no robust preprocessing to enhance speech
features. The word error rate reduction using the new method is
27.9% for the multicondition training mode, and 67.4% for the
clean-only mode, compared with the results with standard MFCCs
with no enhancement. These results are highly statistically signif-
icant, based on a total of 1101 � 10 � 5 = 55050 test utterences
for each of the multicondition and clean-only training modes. In
Table 2, detailed recognition rates (%) for each of the four noise
conditions and for each of the SNRs in set-A using the new method
for multicondition training are provided.

6. CONCLUSIONS

We present in this paper a recursive-EM algorithm, using a novel
implementation technique of iterative stochastic approximation,
for sequential estimation of nonstationary noise embedded in the
speech signal. The algorithm tracks the time-varying noise while

SNR Subway Babble Car Exhibition Average

20 dB 98.53 98.64 98.51 98.64 98.58
15 dB 97.64 98.07 98.33 97.69 97.93
10 dB 95.98 96.37 96.84 95.65 96.21
5 dB 92.08 88.94 92.78 90.25 91.01
0 dB 78.02 65.57 76.83 74.42 73.71

Ave. 92.45 89.52 92.66 91.33 91.49

Table 2. Detailed recognition rates (%) using the new recursive-
EM method with iterative stochastic approximation. Four noise
conditions: Subway, Babble, Car, Exhibition-hall noises; SNRs
from 0 dB to 20 dB in 5-dB increment; Set-A results with multi-
condition training.

optimizing the auxiliary parameters employed to accurately ap-
proximate a nonlinear generative model for the observed noisy
speech. Full speech recognition results for the AURORA task
demonstrate the effectiveness of the new noise estimation algo-
rithm in comparison with a more traditional, MMSE noise estima-
tion method. Future work will extend the algorithm to treat the
noise as time-varying random vectors and to estimate their distri-
bution parameters. The algorithm will also be extended to include
more complex speech models that incorporate dynamic features.
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