
SEMANTIC MODELING FOR DIALOG SYSTEMS IN A
PATTERN RECOGNITION FRAMEWORK

Kuansan Wang

Microsoft Research, One Microsoft Way
Redmond, Washington 98052, USA

ABSTRACT
In this paper, we describe a multimodal dialog system based on
the pattern recognition framework that has been successfully
applied to automatic speech recognition. We treat the dialog
problem as to recognize the optimal action based on the user’s
input and context. In analogous to the acoustic, pronunciation,
and language models for speech recognition, the dialog system
in this framework has language, semantic, and behavior models
to take into account when it searches for the best result. The
paper focuses on our approaches in semantic modeling,
describing how semantic lexicon and domain knowledge are
derived and integrated. We show that, once semantic abstraction
is introduced, multimodal integration can be achieved using the
reference resolution algorithm developed for natural language
understanding. Several applications developed to test various
aspects of the proposed framework are also described.

1. INTRODUCTION

Pattern recognition is a problem of determining how to associate
a given signal with an element from a collection of candidates so
that such association satisfies certain optimal criterion. Many
problems have been treated as pattern recognition problems with
great success, among them, automatic speech recognition. Here
the signal x is the acoustic utterance, and the candidate set
consists of all possible word sequences w generated from a given
lexicon. Assuming uniform cost, the optimal criterion leads to
the well-known maximum a posteriori (MAP) decision rule
where the best choice is the one that maximizes

∑= w wPwxPwPwxPxwP)()|(/)()|()|(. (1)

The probabilistic measures P (x | w) and P (w) are called acoustic
and language models, respectively.

We have been investigating how the framework can be extended
to speech understanding for multimodal dialog systems [1]. The
idea is based on the observation that the mission of speech
understanding is to reach an optimal semantic representation that
best describes the user’s utterance given the dialog history. The
dialog system then synthesizes proper actions based on its
understanding of user’s intent. Let Sn denote the semantic
representation of the n-th dialog turn. We view the speech
understanding problem is to arrive at a semantic representation
that maximizes

),|(),|(),|(111 −−− ∑= nn
w

nnn SxwPSwSPxSSP . (2)

Note that, other than having to account for dialog history Sn-1,
evaluating the conditional probability P (w | x, Sn-1) in (2) is a
central task in recognition. Assuming the dialog context does not
affect the acoustic model, it is straightforward to derive from (1)
that dialog context can be incorporated into the recognition
process if a dialog state dependent language model P (w | Sn-1) is
used. This often means the probabilities of certain words or
phrases need adjustments based on the context of the dialog.
Commercially available systems (e.g., [2]) often use probabilistic
context free grammar (PCFG) for language modeling. Dialog
states can be incorporated dynamically by adjusting the weights
on the relevant PCFG production rules for each dialog turn.
Recently, studies in normalizing the probabilities of phrases and
word lists within N-gram are also conducted [3]. It is shown that
the perplexity of the language model is better controlled than the
unadjusted N-gram, and hence the recognition performance
benefits considerably.

As in the case of speech recognition, the understanding system
implements an optimization algorithm to search for the best
semantic interpretation using the scores from the language model
as well as the semantic model, denoted as P (Sn | w, Sn-1) in (2).
Although (2) treats the recognition outcome as a hidden process,
and hence the semantic evaluation theoretically should sum over
all possible outcomes, we have found it beneficial to introduce
N-best or Viterbi approximation commonly used in recognition
to understanding as well. Specifically, one can approximate (2)
as

),|(),|(max),|(111 −−− ≈ nnn
w

nn SxwPSwSPxSSP .

In this paper, we focus our discussion on two aspects of semantic
modeling. First, the inference of the current semantics Sn must
take into account the past history Sn-1 as well as the domain
knowledge. Semantic model therefore must include domain
experts that can interface with the knowledge source to assess the
likelihood of an inference. We address the issue of knowledge
representation in Sec. 2. Also, a pattern recognition framework
must specify how patterns are specified. As words are basic
building blocks for patterns in speech recognition, we call the
building blocks for understanding semantic objects. Semantic
model must address how semantic objects are defined, and how
they can be fused into representing complex semantics. Such
semantic schema can be viewed as a “lexicon” for understating,
and is discussed in Sec. 3.

2. KNOWLEDGE REPRESENTATION
Many knowledge representation methods have been attempted,
including the database model we used in our system. The

database model describes domain knowledge in terms of tables
and the links of the columns of the tables. A row of a table
represents a specific data item, whereas the columns describe the
attributes of the data. In the following, we call a row in the
database an entity. Since a table is basically a collection of data
of the same type, we use the term entity type to refer to a table.

Consider a simplified example of modeling a stock trading firm
using relational database. This domain may have a table listing
all the assets the firm is currently holding. Columns on this table
may consist of stock symbol, owner of the stock, transaction date
and price. Another table records the information of all the
customers of the firm, including names, address, phone numbers,
balance, and privileges. The knowledge of the amount of stocks a
customer currently owns is modeled by a query into the asset
table with the search key on the owner column. The knowledge
of whether a customer can sell a particular stock is represented
by a more elaborated query that first checks the asset table to see
if the customer currently owns the sufficient amount of the stock
and, if not, checks the account table to see if the customer has the
privilege to short sell. In general, the database model is most
straightforward for domains where changes in the domain state
can be simply modeled as database updates, and a question of
whether something is possible can be answered by a query into
the database. Not all combinations of database updates and
queries make sense. A major task of knowledge engineering is to
define a set of database operations that are useful and permissible
on the domain. These operations are called functions of the
domain. Not all the functions should be exposed at NL semantic
level. For instance, it makes sense to have stock quote query and
trade functions, but not adding or deleting an account through
verbal commands.

In addition to entities explicitly defined in the backend, we have
found the concept of negation a powerful means in representing
knowledge. To this end, we introduce a notion of anti-entity into
our system. Anti-entities are entities known to be impossible for
a particular context. For example, after the user answers
negatively to an explicitly confirm question, the entities in the
question are anti-entities and their linguistic realization can be
weighted down in the language model.

In practice, however, even though the domain knowledge can be
conceptually modeled by a relational database, the access to the
domain knowledge is not necessarily implemented as a database.
In many cases where objected oriented programming style is
practiced, the domain usually manifests itself as an object model
where entity types are modeled by objects. The properties of an
object describe the attributes (columns) of the entity, and the
relations among entity types are often encapsulated as the
methods of the object. The most common way of describing an
object model is through Interface Definition Language (IDL), an
ISO 14750 standard. Recently, the object access mechanism has
been ported to Web and standardized in XML. A Web-based
object implementation, in which objects can be instantiated and
method calls executed by requests in XML Protocol, is called a
Web service.

To reduce the complexity of interfacing with these types of
knowledge sources (direct database tap, conventional object
model, and Web services), we introduce an abstract layer called
domain expert in our system to shield the variations of the back

end from the rest of the system. The mission of a domain expert
is to translate the semantic interpretation into database queries,
object model or web service function calls as appropriate, and
convert the results back into the semantic representation.

3. SEMANTIC SCHEMA
There are two notions of semantics in our system. Surface
semantics refers to a representation of user’s intention from the
raw signal that is independent of the syntactical structure and the
input modalities being used to convey the intention. Discourse
semantics, on the other hand, refers to the system’s belief of
user’s intention after domain knowledge is applied. In this work,
both surface and discourse semantics are represented in tree
structures. The nodes of the surface semantic tree are called
semantic objects, while the nodes of the discourse semantic tree
can be either semantic objects or domain entities.

3.1 Semantic Objects

Since we only model semantics in the context of domain specific
goal-oriented dialog, semantic objects are linguistic embodiments
of either domain entities, domain functions, or common sense
entities such as numbers, currencies, and basic date/time
specifications. The task of semantic evaluation is simply to
uncover what each semantic object is supposed to represent. Our
system uses a simple algorithm to traverse the surface semantic
tree in the depth-first manner [1]. Sequentially, the domain
expert corresponding to the domain for the semantic object is
invoked. If the semantic object refers to a domain entity, the
domain expert returns a representation of that entity. If the node
on the tree refers to a domain function, the operations defined by
the function are executed and the domain expert reports back the
execution results. In either case, the returned instance then
replaces the semantic object on the tree. The process continues
until the root of the tree is encountered, or the domain expert
reports an error. To facilitate reference resolution, the semantic
engine also maintains an entity memory [1].

In our implementations, semantic objects are declared in an XML
document called semantic schema. Each semantic object is
declared as an XML element and its constituents as sub-
elements. One of the constituents of a semantic object is the URL
of its domain expert. To insure domains can work together
without conflicts, each domain defines its own XML namespace.

When a user utterance encompasses multiple domains, the
semantic objects are combined together dynamically based on
their type compatibility. Take the PIM task in MiPad (Sec. 4) for
example. The “send mail” function of the “email” domain
declares one of its constituents, recipient, is of the entity type
“person”. The “calendar management” domain declares a
semantic object “organizer” of entity type “person” that
corresponds to the individual initiating a particular appointment.
A user utterance “send mail to the organizer of the review
meeting” will lead to a surface semantic where the “organizer”
semantic object is embedded into the “send mail” object as a
recipient because their types are compatible, even though these
semantic objects are from different domains. During semantic
evaluation, the domain expert of “calendar management” will be
invoked first to resolve “organizer of the review meeting” and, if
no error occurs, followed by the “email” domain expert. Note

that, since semantic objects are combined only after a user’s
utterance, new domains can immediately enjoy interoperability
with others as soon as their semantic schemas are published. Say
the user signs on an on-line music management system that
declares a semantic object of type “person” that represents the
authors of a song. As soon as the semantic schema is published
to the system, the user can seamlessly include this new domain to
the existing ones by saying “send mail to the creator of this
song.” The understanding of this utterance is distributed through
the respective domain experts across the Web, and the developers
of the “email” domain do not have to anticipate the existence of
the music domain in order for their systems to work together.
Semantic objects and domain entities can be generated via
graphical user interface (GUI) as well. For example, a user can
click on a photo on the screen while saying “send mail to this
person.” The click here creates a domain entity as a cross-
modality referent. Semantic objects and entities from all
modalities are stored in the entity memory, and the system
merges them into the semantic tree using the reference resolution
algorithm [1]. In other words, once objects are created by the raw
input device, the rest of the semantic evaluation can operate in a
modality transparent manner.

In addition to modality transparency, our design also supports a
concept we call turn insensitive principle. The idea is semantic
representations should be insensitive to exact number of dialog
turns through which they are obtained. The concept is inspired by
the observation that a naïve user usually takes more turns to
covey the same message an experienced user would do in a single
turn. As long as the semantic contents are identical, we argue that
the semantic representation, discounting the anti-entities, should
be the same as well. In other words, turn insensitive principle
aims at abstracting the semantics from the details of user
interaction. All our implementation examples suggest the
principle is quite enforceable.

3.2 Dynamic Schema Principle

Our semantic schema is designed to support a concept known as
dynamic schema principle. The idea originates from the design of
XML. Since XML allows everyone to invent new markups on
demand, there must be a mechanism to insure the new markups
can be recognized by others. At minimum, there must be certain
contract for each XML document specifying how the document
is organized through these markups. This contract is called an
XML schema. Any XML source may publish an XML schema to
instruct its user how to make sense of its outputs. Statically
published schemas, however, require the XML producers and
consumers to be constantly in sync. For example, banks that
request XML credit reports from a credit bureau should be aware
of the XML schema of the reports. If the credit bureau adds
functionality and changes the schema, all the banks need to
update their programs processing the XML reports from the
bureau. Depending upon how often and how much the schema is
changed, the update efforts can be straightforward or demanding.

Dynamic schema, on the other hand, lets the consumers
dynamically specify the return format they want. In the above
example, some banks would like to have the unique identification
number to be attached to each person as an XML attribute, some
might prefer it to be a sub-element. A bureau can accommodate

these different needs by letting the banks to specify the format for
each request in a standardized schema definition language. Since
the bureau always formats its result based on the request, it does
not have to synchronize with all its clients when features or
functionality are added to its offering. On the other hand, the
banks have more freedom in deciding whether and when to take
advantage of the new offerings by including them into the
dynamic schema. The banks can also act freely to experiment
alternative formats because doing so has minimum impact on
their content providers.

As one of our design goals is to facilitate dynamic understanding
across multiple domains, we embrace the concept of dynamic
schema in semantic schema so that declarations of semantic
objects can be changed on demand. Rather than statically
defining the semantic representation the discourse manager will
send to the domain experts, our system allows each domain to
register its semantic schema dynamically with the discourse
manager. The semantic schema then acts as the data model for
both surface and discourse semantics, namely, the discourse
manager will format the semantic representation based on the
schema before sending it to the respective domain expert, and
expect the domain expert to follow the same rules in return so
that the discourse manager can interpret the results. We define a
schema definition language in XML, called semantic definition
language (SDL), for specifying semantic schema. SDL was
described in [1]. Through this language, each domain can
dynamically change the semantic lexicon as needs arise.

4. IMPLEMENTATION EXAMPLES

We implemented several applications to test the framework
described above, the most extensive one being the project called
MiPad [4]. The goal of MiPad is to speech enable the Personal
Information Management (PIM) tasks which consist of domains
such as accessing to email, calendar, contact list, notes, etc. The
physical device is a mobile PDA that has sound capturing
capability. A distinctive feature of MiPad is a general purpose
“Command” field to which a user can issue naturally spoken
commands such as “Schedule a meeting with John tomorrow at
two o’clock.” The system will recognize and parse the utterance
and, in response, pop up a “meeting arrangement” page with
proper fields filled based on user’s utterance. The multiple PIM
domains are combined together through the distributed
understanding mechanism described in Sec. 3.1. MiPad uses
Microsoft Outlook object model as the backend knowledge
source.

“Tap-and-talk” is a key feature of MiPad’s user interface design.
The user is asked to use the stylus as the pointing device to
indicate the field he would like to issue command to. A speech
command can be uttered after the user taps on a field on the
screen. The user lifts the stylus after the command is fully
uttered. This design helps a spoken language system in the
following two aspects. First, tap-and-talk enlists the user’s effort
to end-point the speech, thereby reduces the end-pointing errors
that can be made by the recognizer. Second, tap-and-talk also
functions as a user-initiative dialog-state specification. The
dialog focus that leads to the language model used for
recognition is entirely determined by the field tapped by the user.
A user can navigate freely using the stylus. In contrast to most

speech-only applications, there is no need for MiPad to include
any special mechanism to handle spoken dialog focus and
digression. The graphical display also simplifies dramatically the
dialog design. For instance, all the inferred user intentions are
confirmed implicitly on the screen. Whenever an error occurs,
the user can correct it on using soft keyboard or speech. The
display also allows MiPad to confirm and ask the user many
questions in a single turn.

MiPad’s contact list domain was later extended as a directory
assistant application based on Microsoft human resource
database [1]. While MiPad has a fixed UI based on PDA with
wireless network access, the goal of directory assistant is to
explore the system’s adaptability to multiple access modalities,
specifically, a speech-only and a speech-enabled GUI browser.
Both the speech-only and the GUI versions share the same
knowledge and semantic understanding system. The only part
that differs is the user interface. We use a template based
response generation algorithm authored in XSLT to transform the
discourse semantic XML into HTML for GUI and text-to-speech
markup language for the speech-only system [1]. Without a
visual display, the speech-only templates are slightly more
complicated as dialog functions like explicit confirmation and
error recovery must be handled in speech, an error-prone input
method. These functions are handled at the end user device and,
owing to the turn insensitive principle (Sec. 3.1), the semantic
representations received at the discourse manager are identical
for speech-only and GUI cases. We note that, even though
spoken dialog appears to be very different from GUI interactions,
the underlying dialog infrastructure and programming model can
be the same.

In contrast to MiPad where the backend knowledge source is an
object model, directory assistance utilizes a backend that is a
relational database. Through the abstract layer of domain expert
(Sec. 2), it is demonstrated that various types of knowledge
sources can be seamlessly knitted together in spoken language.
This idea is further stretched and tested for a stock trading
application, in which the knowledge sources consist of a database
with two tables as described in Sec. 2, and a stock quote Web
service from MSN Investor. As in the case of directory assistant,
the stock trading application can be accessed through a speech-
only interface or a GUI browser on a PDA with tap-and-talk. The
stock trading domain can be integrated to the email domain in
MiPad directly through the distributed understanding mechanism
described in Sec. 3.1. An example command “send mail to
Microsoft share holders” will prompt the discourse manager to
invoke domain expert from stock trading app to extract the email
addresses for the email domain. Since MiPad was developed long
before stock trading app, this shows applications that work with
each other do not have to be designed specifically for each other.

For more elaborated multimodal integration, we implemented a
geographical application that allows a user to query points of
interest and plan travel routes on a map. We used Microsoft
MapPoint as our knowledge source and added spoken dialog
capability through MapPoint’s object model. This domain is
designed to understand utterances like “Where is the nearest gas
station”, “show me driving directions to get there”, “add this
<click> to the route.” We develop a GUI “parser” that translates
a point-and-click event into a location, and plan to enhance the

parser to recognize an area specification through a dragging
event. As mentioned in Sec. 3, we view the multimodal
integration a reference resolution problem. The above three
sentences contain examples of ellipsis (“… gas station [from the
current location]”), anaphora (“… to get there”), and cross-
modality deictic reference (mouse click). We have found the
reference resolution algorithms designed for natural language
processing can be extended for multimodal integration once the
raw signals from difference modalities are converted into a
unified semantic representation. In addition to multimodal
integration for a single turn, the memory mechanism also allows
cross-turn cross-modality reference resolution. For example, an
apparently ambiguous reference “add the restaurant to the route”
might not indeed ambiguous because the user had clearly
indicated his choice through GUI in the previous turn. In this
particular application, all the clicks on the map are “parsed” into
an entity of type location and stored in the turn memory (Sec.
3.2). Although our underlying speech platform [2] provides a
mechanism called recognition bookmark that allow us to denote
the timing of each GUI event to the acoustic stream, we found it
useful to preserve only the sequential order for these events. The
detailed time stamps are not robust to user’s behavior as speech
may be uttered before, after, or amidst a GUI action, all appear
natural to the user.

5. CONCLUSION

Our experiments seem to indicate it is viable to treat multimodal
dialog as a pattern recognition problem. As object-oriented
design has been proven very useful for GUI, we have found
doing the same to speech simplifies the process of extending GUI
applications to be speech-aware. Throughout our experiments,
we notice that semantic modeling requires less intensive efforts
than language modeling. In order for speech to become a
mainstream UI, the process of developing language model needs
to be simplified. Recently, we have started exploring how
semantic schema can help developing PCFG based language
model [5], and whether structure N-gram [6] can be used to learn
the structure of surface semantics.

Acknowledgement

The MapPoint application was developed by Mr. Issam Bazzi
while he visited Microsoft as a summer intern.

REFERENCES
[1] Wang K., “A plan-based dialog system with probabilistic

inference measures”, Proc. ICSLP-2000, Beijing, China,
October 2000.

[2] Microsoft Speech Application Program Interface (SAPI),
http://www.microsoft.com/speech.

[3] Wang Y., Mahajan M., Huang X., “Unified Language
Model”, Proc. ICASSP-2000, Istanbul Turkey, May 2000.

[4] Huang X. et al, “MiPad: A next generation PDA prototype”,
Proc. ICASSP-2001, Salt Lake City, May 2001.

[5] Wang Y., “Grammar learning for spoken language
understanding.” Submitted to ASRU-2001.

[6] Chelba C., Jenelik F., “Structured language modeling”,
Computer Speech and Language, 14(4), pp.283-332, 2000.

