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ABSTRACT 
In this paper, we describe a multimodal dialog system based on 
the pattern recognition framework that has been successfully 
applied to automatic speech recognition. We treat the dialog 
problem as to recognize the optimal action based on the user’s 
input and context. In analogous to the acoustic, pronunciation, 
and language models for speech recognition, the dialog system 
in this framework has language, semantic, and behavior models 
to take into account when it searches for the best result. The 
paper focuses on our approaches in semantic modeling, 
describing how semantic lexicon and domain knowledge are 
derived and integrated. We show that, once semantic abstraction 
is introduced, multimodal integration can be achieved using the 
reference resolution algorithm developed for natural language 
understanding.  Several applications developed to test various 
aspects of the proposed framework are also described. 

1. INTRODUCTION 

Pattern recognition is a problem of determining how to associate 
a given signal with an element from a collection of candidates so 
that such association satisfies certain optimal criterion. Many 
problems have been treated as pattern recognition problems with 
great success, among them, automatic speech recognition. Here 
the signal x is the acoustic utterance, and the candidate set 
consists of all possible word sequences w generated from a given 
lexicon. Assuming uniform cost, the optimal criterion leads to 
the well-known maximum a posteriori (MAP) decision rule 
where the best choice is the one that maximizes  
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The probabilistic measures P (x | w) and P (w) are called acoustic 
and language models, respectively.  

We have been investigating how the framework can be extended 
to speech understanding for multimodal dialog systems [1]. The 
idea is based on the observation that the mission of speech 
understanding is to reach an optimal semantic representation that 
best describes the user’s utterance given the dialog history. The 
dialog system then synthesizes proper actions based on its 
understanding of user’s intent. Let Sn denote the semantic 
representation of the n-th dialog turn. We view the speech 
understanding problem is to arrive at a semantic representation 
that maximizes 
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Note that, other than having to account for dialog history Sn-1, 
evaluating the conditional probability P (w | x, Sn-1) in (2) is a 
central task in recognition. Assuming the dialog context does not 
affect the acoustic model, it is straightforward to derive from (1) 
that dialog context can be incorporated into the recognition 
process if a dialog state dependent language model P (w | Sn-1) is 
used. This often means the probabilities of certain words or 
phrases need adjustments based on the context of the dialog. 
Commercially available systems (e.g., [2]) often use probabilistic 
context free grammar (PCFG) for language modeling. Dialog 
states can be incorporated dynamically by adjusting the weights 
on the relevant PCFG production rules for each dialog turn. 
Recently, studies in normalizing the probabilities of phrases and 
word lists within N-gram are also conducted [3]. It is shown that 
the perplexity of the language model is better controlled than the 
unadjusted N-gram, and hence the recognition performance 
benefits considerably. 

As in the case of speech recognition, the understanding system 
implements an optimization algorithm to search for the best 
semantic interpretation using the scores from the language model 
as well as the semantic model, denoted as P (Sn | w, Sn-1 ) in (2). 
Although (2) treats the recognition outcome as a hidden process, 
and hence the semantic evaluation theoretically should sum over 
all possible outcomes, we have found it beneficial to introduce 
N-best or Viterbi approximation commonly used in recognition 
to understanding as well. Specifically, one can approximate (2) 
as 
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In this paper, we focus our discussion on two aspects of semantic 
modeling. First, the inference of the current semantics Sn must 
take into account the past history Sn-1 as well as the domain 
knowledge. Semantic model therefore must include domain 
experts that can interface with the knowledge source to assess the 
likelihood of an inference. We address the issue of knowledge 
representation in Sec. 2. Also, a pattern recognition framework 
must specify how patterns are specified. As words are basic 
building blocks for patterns in speech recognition, we call the 
building blocks for understanding semantic objects. Semantic 
model must address how semantic objects are defined, and how 
they can be fused into representing complex semantics. Such 
semantic schema can be viewed as a “lexicon” for understating, 
and is discussed in Sec. 3. 

2. KNOWLEDGE REPRESENTATION 
Many knowledge representation methods have been attempted, 
including the database model we used in our system. The 



database model describes domain knowledge in terms of tables 
and the links of the columns of the tables. A row of a table 
represents a specific data item, whereas the columns describe the 
attributes of the data. In the following, we call a row in the 
database an entity. Since a table is basically a collection of data 
of the same type, we use the term entity type to refer to a table.  

Consider a simplified example of modeling a stock trading firm 
using relational database. This domain may have a table listing 
all the assets the firm is currently holding. Columns on this table 
may consist of stock symbol, owner of the stock, transaction date 
and price. Another table records the information of all the 
customers of the firm, including names, address, phone numbers, 
balance, and privileges. The knowledge of the amount of stocks a 
customer currently owns is modeled by a query into the asset 
table with the search key on the owner column. The knowledge 
of whether a customer can sell a particular stock is represented 
by a more elaborated query that first checks the asset table to see 
if the customer currently owns the sufficient amount of the stock 
and, if not, checks the account table to see if the customer has the 
privilege to short sell. In general, the database model is most 
straightforward for domains where changes in the domain state 
can be simply modeled as database updates, and a question of 
whether something is possible can be answered by a query into 
the database. Not all combinations of database updates and 
queries make sense. A major task of knowledge engineering is to 
define a set of database operations that are useful and permissible 
on the domain. These operations are called functions of the 
domain. Not all the functions should be exposed at NL semantic 
level. For instance, it makes sense to have stock quote query and 
trade functions, but not adding or deleting an account through 
verbal commands. 

In addition to entities explicitly defined in the backend, we have 
found the concept of negation a powerful means in representing 
knowledge. To this end, we introduce a notion of anti-entity into 
our system. Anti-entities are entities known to be impossible for 
a particular context. For example, after the user answers 
negatively to an explicitly confirm question, the entities in the 
question are anti-entities and their linguistic realization can be 
weighted down in the language model. 

In practice, however, even though the domain knowledge can be 
conceptually modeled by a relational database, the access to the 
domain knowledge is not necessarily implemented as a database. 
In many cases where objected oriented programming style is 
practiced, the domain usually manifests itself as an object model 
where entity types are modeled by objects. The properties of an 
object describe the attributes (columns) of the entity, and the 
relations among entity types are often encapsulated as the 
methods of the object. The most common way of describing an 
object model is through Interface Definition Language (IDL), an 
ISO 14750 standard. Recently, the object access mechanism has 
been ported to Web and standardized in XML. A Web-based 
object implementation, in which objects can be instantiated and 
method calls executed by requests in XML Protocol, is called a 
Web service.  

To reduce the complexity of interfacing with these types of 
knowledge sources (direct database tap, conventional object 
model, and Web services), we introduce an abstract layer called 
domain expert in our system to shield the variations of the back 

end from the rest of the system. The mission of a domain expert 
is to translate the semantic interpretation into database queries, 
object model or web service function calls as appropriate, and 
convert the results back into the semantic representation. 

3. SEMANTIC SCHEMA 
There are two notions of semantics in our system. Surface 
semantics refers to a representation of user’s intention from the 
raw signal that is independent of the syntactical structure and the 
input modalities being used to convey the intention. Discourse 
semantics, on the other hand, refers to the system’s belief of 
user’s intention after domain knowledge is applied. In this work, 
both surface and discourse semantics are represented in tree 
structures. The nodes of the surface semantic tree are called 
semantic objects, while the nodes of the discourse semantic tree 
can be either semantic objects or domain entities. 

3.1 Semantic Objects 

Since we only model semantics in the context of domain specific 
goal-oriented dialog, semantic objects are linguistic embodiments 
of either domain entities, domain functions, or common sense 
entities such as numbers, currencies, and basic date/time 
specifications. The task of semantic evaluation is simply to 
uncover what each semantic object is supposed to represent. Our 
system uses a simple algorithm to traverse the surface semantic 
tree in the depth-first manner [1]. Sequentially, the domain 
expert corresponding to the domain for the semantic object is 
invoked. If the semantic object refers to a domain entity, the 
domain expert returns a representation of that entity. If the node 
on the tree refers to a domain function, the operations defined by 
the function are executed and the domain expert reports back the 
execution results. In either case, the returned instance then 
replaces the semantic object on the tree. The process continues 
until the root of the tree is encountered, or the domain expert 
reports an error. To facilitate reference resolution, the semantic 
engine also maintains an entity memory [1]. 

In our implementations, semantic objects are declared in an XML 
document called semantic schema. Each semantic object is 
declared as an XML element and its constituents as sub-
elements. One of the constituents of a semantic object is the URL 
of its domain expert. To insure domains can work together 
without conflicts, each domain defines its own XML namespace.  

When a user utterance encompasses multiple domains, the 
semantic objects are combined together dynamically based on 
their type compatibility. Take the PIM task in MiPad (Sec. 4) for 
example. The “send mail” function of the “email” domain 
declares one of its constituents, recipient, is of the entity type 
“person”. The “calendar management” domain declares a 
semantic object “organizer” of entity type “person” that 
corresponds to the individual initiating a particular appointment. 
A user utterance “send mail to the organizer of the review 
meeting” will lead to a surface semantic where the “organizer” 
semantic object is embedded into the “send mail” object as a 
recipient because their types are compatible, even though these 
semantic objects are from different domains. During semantic 
evaluation, the domain expert of “calendar management” will be 
invoked first to resolve “organizer of the review meeting” and, if 
no error occurs, followed by the “email” domain expert. Note 



that, since semantic objects are combined only after a user’s 
utterance, new domains can immediately enjoy interoperability 
with others as soon as their semantic schemas are published. Say 
the user signs on an on-line music management system that 
declares a semantic object of type “person” that represents the 
authors of a song. As soon as the semantic schema is published 
to the system, the user can seamlessly include this new domain to 
the existing ones by saying “send mail to the creator of this 
song.” The understanding of this utterance is distributed through 
the respective domain experts across the Web, and the developers 
of the “email” domain do not have to anticipate the existence of 
the music domain in order for their systems to work together. 
Semantic objects and domain entities can be generated via 
graphical user interface (GUI) as well. For example, a user can 
click on a photo on the screen while saying “send mail to this 
person.” The click here creates a domain entity as a cross-
modality referent. Semantic objects and entities from all 
modalities are stored in the entity memory, and the system 
merges them into the semantic tree using the reference resolution 
algorithm [1]. In other words, once objects are created by the raw 
input device, the rest of the semantic evaluation can operate in a 
modality transparent manner. 

In addition to modality transparency, our design also supports a 
concept we call turn insensitive principle. The idea is semantic 
representations should be insensitive to exact number of dialog 
turns through which they are obtained. The concept is inspired by 
the observation that a naïve user usually takes more turns to 
covey the same message an experienced user would do in a single 
turn. As long as the semantic contents are identical, we argue that 
the semantic representation, discounting the anti-entities, should 
be the same as well. In other words, turn insensitive principle 
aims at abstracting the semantics from the details of user 
interaction. All our implementation examples suggest the 
principle is quite enforceable.  

3.2 Dynamic Schema Principle 

Our semantic schema is designed to support a concept known as 
dynamic schema principle. The idea originates from the design of 
XML. Since XML allows everyone to invent new markups on 
demand, there must be a mechanism to insure the new markups 
can be recognized by others. At minimum, there must be certain 
contract for each XML document specifying how the document 
is organized through these markups. This contract is called an 
XML schema. Any XML source may publish an XML schema to 
instruct its user how to make sense of its outputs. Statically 
published schemas, however, require the XML producers and 
consumers to be constantly in sync. For example, banks that 
request XML credit reports from a credit bureau should be aware 
of the XML schema of the reports. If the credit bureau adds 
functionality and changes the schema, all the banks need to 
update their programs processing the XML reports from the 
bureau. Depending upon how often and how much the schema is 
changed, the update efforts can be straightforward or demanding. 

Dynamic schema, on the other hand, lets the consumers 
dynamically specify the return format they want. In the above 
example, some banks would like to have the unique identification 
number to be attached to each person as an XML attribute, some 
might prefer it to be a sub-element. A bureau can accommodate 

these different needs by letting the banks to specify the format for 
each request in a standardized schema definition language. Since 
the bureau always formats its result based on the request, it does 
not have to synchronize with all its clients when features or 
functionality are added to its offering. On the other hand, the 
banks have more freedom in deciding whether and when to take 
advantage of the new offerings by including them into the 
dynamic schema. The banks can also act freely to experiment 
alternative formats because doing so has minimum impact on 
their content providers. 

As one of our design goals is to facilitate dynamic understanding 
across multiple domains, we embrace the concept of dynamic 
schema in semantic schema so that declarations of semantic 
objects can be changed on demand. Rather than statically 
defining the semantic representation the discourse manager will 
send to the domain experts, our system allows each domain to 
register its semantic schema dynamically with the discourse 
manager. The semantic schema then acts as the data model for 
both surface and discourse semantics, namely, the discourse 
manager will format the semantic representation based on the 
schema before sending it to the respective domain expert, and 
expect the domain expert to follow the same rules in return so 
that the discourse manager can interpret the results. We define a 
schema definition language in XML, called semantic definition 
language (SDL), for specifying semantic schema. SDL was 
described in [1]. Through this language, each domain can 
dynamically change the semantic lexicon as needs arise. 

4. IMPLEMENTATION EXAMPLES 

We implemented several applications to test the framework 
described above, the most extensive one being the project called 
MiPad [4]. The goal of MiPad is to speech enable the Personal 
Information Management (PIM) tasks which consist of domains 
such as accessing to email, calendar, contact list, notes, etc. The 
physical device is a mobile PDA that has sound capturing 
capability. A distinctive feature of MiPad is a general purpose 
“Command” field to which a user can issue naturally spoken 
commands such as “Schedule a meeting with John tomorrow at 
two o’clock.” The system will recognize and parse the utterance 
and, in response, pop up a “meeting arrangement” page with 
proper fields filled based on user’s utterance. The multiple PIM 
domains are combined together through the distributed 
understanding mechanism described in Sec. 3.1. MiPad uses 
Microsoft Outlook object model as the backend knowledge 
source. 

“Tap-and-talk” is a key feature of MiPad’s user interface design. 
The user is asked to use the stylus as the pointing device to 
indicate the field he would like to issue command to. A speech 
command can be uttered after the user taps on a field on the 
screen. The user lifts the stylus after the command is fully 
uttered. This design helps a spoken language system in the 
following two aspects. First, tap-and-talk enlists the user’s effort 
to end-point the speech, thereby reduces the end-pointing errors 
that can be made by the recognizer. Second, tap-and-talk also 
functions as a user-initiative dialog-state specification. The 
dialog focus that leads to the language model used for 
recognition is entirely determined by the field tapped by the user. 
A user can navigate freely using the stylus. In contrast to most 



speech-only applications, there is no need for MiPad to include 
any special mechanism to handle spoken dialog focus and 
digression. The graphical display also simplifies dramatically the 
dialog design. For instance, all the inferred user intentions are 
confirmed implicitly on the screen. Whenever an error occurs, 
the user can correct it on using soft keyboard or speech. The 
display also allows MiPad to confirm and ask the user many 
questions in a single turn. 

MiPad’s contact list domain was later extended as a directory 
assistant application based on Microsoft human resource 
database [1]. While MiPad has a fixed UI based on PDA with 
wireless network access, the goal of directory assistant is to 
explore the system’s adaptability to multiple access modalities, 
specifically, a speech-only and a speech-enabled GUI browser. 
Both the speech-only and the GUI versions share the same 
knowledge and semantic understanding system. The only part 
that differs is the user interface. We use a template based 
response generation algorithm authored in XSLT to transform the 
discourse semantic XML into HTML for GUI and text-to-speech 
markup language for the speech-only system [1]. Without a 
visual display, the speech-only templates are slightly more 
complicated as dialog functions like explicit confirmation and 
error recovery must be handled in speech, an error-prone input 
method. These functions are handled at the end user device and, 
owing to the turn insensitive principle (Sec. 3.1), the semantic 
representations received at the discourse manager are identical 
for speech-only and GUI cases. We note that, even though 
spoken dialog appears to be very different from GUI interactions, 
the underlying dialog infrastructure and programming model can 
be the same. 

In contrast to MiPad where the backend knowledge source is an 
object model, directory assistance utilizes a backend that is a 
relational database. Through the abstract layer of domain expert 
(Sec. 2), it is demonstrated that various types of knowledge 
sources can be seamlessly knitted together in spoken language. 
This idea is further stretched and tested for a stock trading 
application, in which the knowledge sources consist of a database 
with two tables as described in Sec. 2, and a stock quote Web 
service from MSN Investor. As in the case of directory assistant, 
the stock trading application can be accessed through a speech-
only interface or a GUI browser on a PDA with tap-and-talk. The 
stock trading domain can be integrated to the email domain in 
MiPad directly through the distributed understanding mechanism 
described in Sec. 3.1. An example command “send mail to 
Microsoft share holders” will prompt the discourse manager to 
invoke domain expert from stock trading app to extract the email 
addresses for the email domain. Since MiPad was developed long 
before stock trading app, this shows applications that work with 
each other do not have to be designed specifically for each other. 

For more elaborated multimodal integration, we implemented a 
geographical application that allows a user to query points of 
interest and plan travel routes on a map. We used Microsoft 
MapPoint as our knowledge source and added spoken dialog 
capability through MapPoint’s object model. This domain is 
designed to understand utterances like “Where is the nearest gas 
station”, “show me driving directions to get there”, “add this 
<click> to the route.” We develop a GUI “parser” that translates 
a point-and-click event into a location, and plan to enhance the 

parser to recognize an area specification through a dragging 
event. As mentioned in Sec. 3, we view the multimodal 
integration a reference resolution problem. The above three 
sentences contain examples of ellipsis (“… gas station [from the 
current location]”), anaphora (“… to get there”), and cross-
modality deictic reference (mouse click).  We have found the 
reference resolution algorithms designed for natural language 
processing can be extended for multimodal integration once the 
raw signals from difference modalities are converted into a 
unified semantic representation. In addition to multimodal 
integration for a single turn, the memory mechanism also allows 
cross-turn cross-modality reference resolution. For example, an 
apparently ambiguous reference “add the restaurant to the route” 
might not indeed ambiguous because the user had clearly 
indicated his choice through GUI in the previous turn. In this 
particular application, all the clicks on the map are “parsed” into 
an entity of type location and stored in the turn memory (Sec. 
3.2). Although our underlying speech platform [2] provides a 
mechanism called recognition bookmark that allow us to denote 
the timing of each GUI event to the acoustic stream, we found it 
useful to preserve only the sequential order for these events. The 
detailed time stamps are not robust to user’s behavior as speech 
may be uttered before, after, or amidst a GUI action, all appear 
natural to the user. 

5. CONCLUSION 

Our experiments seem to indicate it is viable to treat multimodal 
dialog as a pattern recognition problem. As object-oriented 
design has been proven very useful for GUI, we have found 
doing the same to speech simplifies the process of extending GUI 
applications to be speech-aware. Throughout our experiments, 
we notice that semantic modeling requires less intensive efforts 
than language modeling. In order for speech to become a 
mainstream UI, the process of developing language model needs 
to be simplified. Recently, we have started exploring how 
semantic schema can help developing PCFG based language 
model [5], and whether structure N-gram [6] can be used to learn 
the structure of surface semantics. 
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