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ABSTRACT

Using the Bayesian networks framework, we present a new
multi-band approach for continuous speech recognition. This
new approach has the advantage to overcome all the limita-
tions of the standard multi-band techniques. Moreover, it
leads to a higher fidelity speech modeling than HMMs. We
provide a preliminary evaluation of the performance of our
new approach on a connected digits recognition task.

1. INTRODUCTION

In standard multi-band (SMB) speech recognition, the fre-
quency axis is divided into several sub-bands, then each
sub-band is independently modeled by a HMM. The recog-
nition scores in the sub-bands are then merged with some re-
combination module. The introduction of multi-band speech
recognition [1, 2] has been essentially motivated by two de-
sires. The first one is to mime the behavior of the audi-
tive nerve which decomposes the speech signal into differ-
ent sub-bands before recognition [3]. The second one is
to improve the robustness to band-limited noise. While the
ideas leading to multi-band speech recognition are attrac-
tive, the SMB approach has many drawbacks. For instance,
the sub-bands are assumed mutually independent which is
an unrealistic hypothesis. Moreover, the information con-
tained in one sub-band is not discriminative in general. In
addition, it is not easy to deal with asynchrony, particularly
in continuous speech recognition. As a consequence, the
recombination step can be a very difficult task.

In this paper, we present an alternative approach to per-
form continuous multi-band speech recognition which has
the advantage to overcome all the limitations (mentioned
above) of the SMB approach. Moreover, our experiments
show clearly that asynchrony between sub-bands is extremely
important in multi-band ASR. Furthermore, in clean con-
ditions, we outperform HMMs without using the full-band
parameterization as an additional “sub-band”. In this sense,
our approach can be also seen as a new way to model speech
with higher fidelity than HMMs. In our opinion, this is
mostly due to the fact that, contrarily to HMMs, we intro-
duce a certain modeling of the frequency dynamics, namely,
the asynchrony and dependency between sub-bands.

Our multi-band approach is based on the Bayesian net-
works (BNs) formalism. Using the interpretation of a HMM
as a BN [4], we build a more complex but uniform BN on
the time-frequency domain by “coupling” all the HMMs as-
sociated with the different sub-bands. In [4] we have pre-
sented a preliminary study of the same methodology, how-
ever only the case of 2 sub-bands and isolated speech recog-
nition has been considered. In the present work, we provide
the extension to continuous speech recognition with an ar-
bitrary number of sub-bands.

The use of BNs in speech recognition has also been re-
cently investigated in [5], but multi-band modeling is not
addressed in that work. Briefly, the BNs formalism consists
in associating a directed acyclic graph to the joint proba-
bility distribution (JPD) P (X) of a set of random variables
X = fX1; :::; XNg. The nodes of this graph represent the
random variables, while the arrows encode the conditional
independencies (CI) which (are supposed to) exist in the
JPD. The set of all CI relations, which are implied by the
separation properties of the graph, are termed the Markov
properties. The latter can be read as follows: conditioned
on its parents, a variable is independent of all the other vari-
ables except its descendants. Given the graph structure, a
BN is completely defined by the conditional probabilities of
the variables given their parents. Indeed, the JPD can be ex-
pressed in a factored way as1 P (x) =

QN

i=1 P (xijpa(xi));
where pa(xi) denotes an outcome of the parents of X i.

In the next section, we define our multi-band model. In
section 3 and 4, we present the decoding and learning al-
gorithms. In section 5, we evaluate the performance of our
model on a connected digits recognition task.

2. DEFINITION OF OUR MULTI-BAND MODEL

Let us assume that we are given a vocabulary V of jV j
words. For each word v 2 V , instead of considering an
independent HMM for each sub-band (as in SMB), we cou-
ple all the HMMs by adding directed links between the vari-
ables in order to capture the dependency between sub-bands.
A natural question is: what are the “appropriate” links to

1In the whole paper, upper-case (resp. lower-case) letters are used for
random variables (resp. outcomes).



add? Probably the best answer is to learn the graphical
structure (i.e., the dependencies between variables) from
data. However, this strategy (which is extremely interest-
ing and which we are currently investigating) is beyond the
scope of this paper. Instead, we impose a graphical struc-
ture (for all words) which is motivated by the following cri-
teria. We want a model where no continuous variable has
discrete children in order to apply an exact inference algo-
rithm. We also want a model with a small number of pa-
rameters and for which the inference algorithm is tractable.
Finally, we want to have links between the hidden variables
along the frequency axis in order to capture the asynchrony
between sub-bands. A simple model which satisfies these
criteria is the one shown in Figure 1. In this BN, the hid-
den variables of sub-band n are linked to those of sub-band
n+ 1 in such way that the state of a hidden variable in sub-
band n+ 1 at time t is conditioned by the state of two hid-
den variables: at time t � 1 in the same sub-band and at
time t in sub-band n. Each Q(n)
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Fig. 1. B-band Bayesian network

crete variable taking its values in the set of ordered labels

Iv = f1v; :::;mvg. Each O(n)
t
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�
is a continu-

ous variable with a Gaussian distribution representing the
observation vector at time t in sub-band n (n = 1; :::; B),
B is the number of sub-bands. We impose a left-to-right
topology on each sub-band and assume that the hidden pro-
cess is stationary. Therefore, given a word v 2 V and
for each (i; j; k) 2 I3v , the numerical parameterization of

our model is: aij(v)
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where b(n)i;v is a Gaussian with mean �(n)i (v) and covariance

�
(n)
i (v). The asynchrony between sub-bands is taken into

account by allowing all the u(n)ijk(v) to be non-zero, except
when k < j or k > j + 1 because of the left-to-right topol-
ogy.

Contrarily to HMMs, our BN provides “a” modeling of
the frequency dynamics of speech. Contrarily to SMB, our
BN allows interaction between sub-bands and the possible
asynchrony between them is taken into account. Moreover,

our model uses the information contained in all sub-bands
and no recombination step is needed. A related work has
been proposed in [6] where a multi-band Markov random
field is analyzed by mean of Gibbs distributions. This ap-
proach (contrarily to ours) does not lead however to exact
nor fast inference algorithms and assumes a linear model
for asynchrony between sub-bands. In our approach, the
asynchrony is learned from data.

3. CONTINUOUS SPEECH DECODING
ALGORITHM

Given a B-band model of each word in the vocabulary and
a speaker utterance, we need to identify the most likely se-
quence of words given the observation. A naive solution
would be to use a B-dimensional Viterbi algorithm which is
computationally very expensive. In this section, we present
an efficient decoding algorithm which relies essentially on
a state-augmentedB-band model. The basic idea is to build
a “super” B-band model which represents all the words in
the vocabulary. Precisely, each variable Q(n)

t in Figure 1
takes now its values in the set I =

S
v2V Iv . To define this

“super” model we need to specify the conditional probabil-
ities of the hidden and the observed variables. The latter are
simply given by those corresponding to each word, namely:

P (O
(n)
t = �jQ
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4
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(�); for each iv 2 I:

To specify the former, we need to include the language model,
we also make some (a)synchrony assumptions. We still al-
low complete asynchrony inside a word, but we impose a
full synchrony of all sub-bands when transiting between
words. Precisely, since we have a left-to-right topology, the
only non-zero conditional probabilities are the following:
� The synchronous transition between two (not necessarily
different) words v and v 0:

P (Q
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where P (vjv0) is given by the language model.
� The inside-word conditional probabilities:
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Now we have a completely defined B-band model on

which we can perform decoding. To do so, we use the
Dawid algorithm [7] which allows the identification (with
the same time complexity as the JLO algorithm [8]) of the
most likely sequence of hidden states given observations.
The Dawid algorithm proceeds in two steps (as JLO). The
first one (which is exactly the same as in JLO) consists in
using graph-theoretic tools (moralization and triangulation)
to transform the initial graphical structure of the BN into a
specific graphical entity called the junction tree. We recall
that the junction tree is a tree where the nodes are cliques
and separators. The cliques are clusters of variables. A



separator is simply the intersection between two adjacent
cliques. The second step (the message propagation scheme)
differs from the JLO one in potential updating and in the
distribution phase. We refer the reader to [7] for details.

The construction of the junction tree is of particular in-
terest to us because the decoding efficiency requires a junc-
tion trees with “small” clique state-spaces. In the 2-band
case [4], finding a minimal junction tree is obvious because
the moral graph is triangulated as it is. This is not true any
more when B > 2. Since the problem of automatically
finding minimal junction trees (for arbitrary BNs) is NP-
hard, we need to find an appropriate (analytical) technique
to derive a minimal junction tree for our particular B-band
BN. We do this by induction, the resulting junction tree is
shown in Figure 2. We thus have a computationally optimal
tree to propagate observations.

The complexity of the Dawid algorithm scales as the
sum of clique state-spaces. Therefore, given the (a)synchrony
assumptions, the left-to-right topology and our junction tree,
the total complexity2 of our decoding algorithm isO(mBT+
jV j2T ).

4. MODEL PARAMETERS ESTIMATION

So far, we have assumed that parameters of the B-band BN
are known for each word. In this section, we present the
algorithm of parameters estimation (in the case of a single
Gaussian per state). In the experiments we carry out, we
learn the model of each word independently of the others
(i.e., we do not perform embedded training). Thus, in or-
der to simplify the notation in the formulae below, we drop
the reference to the word under consideration. Thus, all the
quantities below correspond to the notations of Section 2
(not Section 3). Suppose that we have (for a given word v)
an observation vector o = (o
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Using the EM algorithm, we obtain the re-estimation formu-
lae as follows. Suppose that we have estimated the parame-
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2If the number of hidden states is the same for all words and equals
some integer m (card (Iv) = m;8v).

3For sake of notational simplicity, we drop the iteration index.
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Fig. 2. Junction tree of the B-band Bayesian network.
Cliques and separators are respectively represented by el-
lipsoids and rectangles.
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Notice that, for each time t and each sub-band n, the sub-
set of hidden variables involved in the posterior probability
 
(n)
t (i; j; k) is included in some clique of the junction tree.

Therefore, all the quantities above can be efficiently com-
puted using the JLO algorithm [8] which allows the com-
putation of marginal and conditional probabilities of clique
variables.



5. EXPERIMENTS

In this section, we evaluate the performance of our B-band
BN on a connected digits recognition task. Our experiments
are carried out on the Tidigits database. In learning we only
use the isolated part of the training database where each
speaker utters 11 digits twice. Also, we do not remove the
initial and final pauses, thus we do not have a silence model.
In test, we use the full (test) database in which 8636 sen-
tences are uttered, each sentence contains between 1 and 7
digits.

We compare4 the performances of our B-band BN to
those of 2 models: HMMs and “synchronous” BNs. In all
the experiments, for every digit and all models, the number
of hidden states is six (m = 6) and we have a single Gaus-
sian per state with a diagonal covariance matrix. We use a
uniform language model, i.e., P (vjv 0) = 1

11
(jV j = 11).

The parameterization of the classical full-band HMM is
done as follows: 25ms frames with a frame shift of 10ms,
each frame is passed through a set of 24 triangular filters
resulting in a vector of 35 features, namely, 11 static MFCC
(the energy is dropped), 12 � and 12 ��. For our B-band
model, we present experiments for B = 2; 3 . The parame-
terization of the 2-band BN is done as follows: each frame
is passed through the 14 first (resp. last 10) filters result-
ing in the acoustic vector of sub-band 1 (resp. sub-band
2). Each vector contains 17 features: 5 static MFCC, 6 �
and 6 ��. The resulting bandwidths of sub-bands 1 and 2
are [0::1467Hz] and [1211Hz::10000Hz] respectively. For
the 3-band BN, each frame is passed through the first 8,
second 8 and last 8 filters resulting in the acoustic vector
of sub-band 1, 2 and 3 respectively. Each vector contains
11 features: 3 static MFCC, 4 � and 4 ��. The result-
ing bandwidths of sub-bands 1, 2 and 3 are [0::692Hz],
[615Hz::2152Hz]and [1777Hz::10000Hz] respectively. The
parameterization of the third model is done as follows: for
each frame, we concatenate the acoustic vectors of sub-band
1 and 2 (resp. 1, 2 and 3) and use the resulting vector of
34 (resp. 33) features as an input for the HMM-based sys-
tem. We refer to these as Sync2b and Sync3b respectively.
The behavior of this third model is very interesting to an-
alyze. This is because it is exactly equivalent to a B-band
BN (B = 2; 3) where a complete inside-word (or frame)
synchrony between the sub-bands is imposed (since we use
diagonal covariances). Therefore, the comparison between
Sync2b (resp. Sync3b) and our 2-band (resp. 3-band) BN is
a good indication about the importance of asynchrony.

Table 1 shows the word accuracy scores obtained us-

4Very good scores can be obtained on this database using multi-
Gaussians HMMs and adjusted parameters. Our goal here is not to tune
the parameters in order to achieve the highest performances. Rather, we
want to provide a fair comparison using a baseline system for all the mod-
els we consider. We believe that this way we have a fair initial judgment
on the capacities of each system.

ing the 3 models. The comparison between our B-band BN
and the frame-synchronous one indicates clearly that asyn-
chrony between sub-bands is very important in the model-
ing. Regarding the comparison between our B-band BN
and HMMs, let us point out that (to the best of our knowl-
edge) the only multi-band systems which out-perform HMMs
in clean conditions use the full-band parameterization as
an additional “sub-band”. Our multi-band system do not
use such (conceptually disturbing) procedure, still it does
considerably outperform HMMs. This also shows that, in-
deed, taking into account some of the frequency dynamics
(asynchrony and dependency between sub-bands) leads to a
higher fidelity speech modeling than HMMs.

Model HMM Sync2b Sync3b 2-band 3-band
Score 61.4% 60.5% 55.1% 73.0% 68.9%

Table 1. Word accuracy scores on clean speech.

6. CONCLUSION

Using the Bayesian networks framework, we developed a
new multi-band approach for continuous speech recogni-
tion. We carried out preliminary experiments in clean speech
conditions. Our system does not only outperform the stan-
dard multi-band ones, but also outperforms the HMM-based
one. This shows that our approach is very promising in the
field speech recognition. Although, in the time of writing,
we do not have results in noisy speech conditions, we are
very confident on this matter. Indeed, in our previous work
[4] on isolated speech recognition, tests in noisy conditions
has been conducted and the results were very promising. We
expect the same behavior to hold in the continuous setting.
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