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ABSTRACT

Distributed speech recognition (DSR) is an interesting tech-
nology for mobile recognition tasks where the recognizer is
split up into two parts and connected with a transmission
channel. We compare the performance of standard and hy-
brid modeling approaches in this environment. The eval-
uation is done on clean and noisy speech samples taken
from the TI digits and the AURORA database. Our results
show that that the hybrid modeling techniques can outper-
form standard continuous systems on this task.

1. INTRODUCTION

The size reduction of portable computers or mobile phones
demands new methods of man-machine interaction. One
possible way of communication is speech, but today’s
speech recognizers require considerable storage and compu-
tation power to produce adequate results. The DSR frame-
work divides the standard recognizer into the feature ex-
traction on the client side (with low requirements regard-
ing memory or processor power) and the classifier - in our
case hidden Markov models (HMMs) - which can be imple-
mented at the server side deploying complex statistical al-
gorithms and large language models (see figure 1). The fea-
ture extraction computes 13 mel-frequency cepstrum coef-
ficients (c0; : : : ; c12)T (MFCCs) and the logarithmic frame
energy E every 10 ms for a 25 ms frame of speech samples.
The major issue in DSR is the transmission channel that
possesses only a limited bandwidth, but is otherwise con-
sidered ideal for our investigations1. The features are vec-
tor quantized and transmitted over the channel to the recog-
nizer. We take the bit rate as channel characterization which
is directly related to the bandwidth [1].
Our investigated channel allows a bit rate of 4.4 kbit/s, with
channel coding and header the bit rate is 4.8 kbit/s, this is
half of the data transmission bit rate in GSM. More details
about the channel can be found in [2]. We will show in

1appropriate channel coding can protect the data in real environments

the following sections that our hybrid modeling techniques
possess certain advantages compared to traditional meth-
ods for distributed speech recognition. Section 2 gives an
overview about the vector quantization of the features, sec-
tions 3 and 4 present continuous and discrete recognizers
based on vector-quantized features. A hybrid recognizer
based on quantized tied-posteriors is given in section 5, sec-
tion 6 contains the results and section 7 summarizes this
article.

2. VECTOR QUANTIZATION OF CONTINUOUS
FEATURE VECTORS

The vector quantization (VQ) step is necessary to reduce the
amount of data that is sent over the transmission channel:
Since all feature coefficients are float values (that require
on most machines 4 bytes), we would have to transmit 14 �4
bytes resulting in a bit rate of

BR =
14 � 4 � 8 bits

10ms
= 44:8 kbit=s

To reduce this amount a VQ is used that is based on the k-
means algorithm with an Euclidean distance measure. For
our channel (4.4 kbit/s) we use a quantization scheme taken
from the ETSI standard [2], see figure 2. Two components
from the original feature vector are composed into a new
vector that is then quantized. Since only the indices of the
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Fig. 1. DSR set-up
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Fig. 2. Codebook generation of the vector quantizer (7
codebook vector indices per frame

codebook vectors need to be transmitted the bit rate is

BRVQ =
6 � 6 bits + 8 bits

10ms
= 4:4 kbit=s

2.1. Optimizing the vector quantizer using a maximum
mutual information criterion

An improvement of the vector quantizer presented in sec-
tion 2 can be achieved if a neural VQ trained to maximize
the mutual information between the VQ labels Y and the
pattern class stream W (e.g. words or phonemes) is in-
troduced [3]. This approach seems to be suited for DSR
since the amount of data to be sent over the channel is un-
changed compared to a standard k-means vector quantizer,
but MMI-NN hybrid approaches usually outperform tradi-
tional discrete systems as shown in [3] and [4].
If we denote the parameter set of the VQ with �, the mutual
information between the VQ stream Y and the pattern class
stream W can be written as follows [4]:

I(W;Y�) := H(Y�)�H(Y�jW ) = H(W )�H(W jY�)
(1)

Since we are interested in modifying Y� to maximize
I(Y�;W ), the maximum mutual information (MMI) is
reached if

H(W jY ) = �

X

I

X

M

p�(wi; ym) � log(p�(wijym))

= �

X

I

X

M

p�(wi; ym) � log
p�(wi; ym)P
R p�(wr ; ym)

(2)

is minimized with respect to �.
This optimization is performed using a neural net with

the parameter set � associated with the network weights.
The weights are computed with a gradient descent algorithm
based on the derivative @H(W jY�)

@�
using (2), the details of

the algorithm can be found in [4]. For our experiments we
have trained the MMI-NN with the same pseudo-phonemes
that are introduced in section 5.

3. RECOGNITION WITH DISCRETE FEATURES

Our discrete hidden Markov model consists of a transition
matrix and an array of discrete values for each state. These

values represent the probabilities of every possible code-
book vector given a HMM state. Since we have 7 different
codebooks, we use 7 probability arrays (streams) in each
state. For our recognition task (recognizing spoken digits,
see section 6) we use whole word models plus two silence
models for interword silence and sentence start/end silence,
respectively. The exact topology is adopted from [5] and
depicted in figure 3. We know from section 2 that the
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Fig. 3. HMM topology for number words (left) and 3-state
silence model (right)

VQ indices extracted on the client side are transmitted over
the channel. Since these indices represent the correspond-
ing codebook vector we have the necessary information and
can perform the recognition. From this point of view it is
obvious that a discrete HMM recognizer does not produce
any additional error when used in a distributed environment.

4. RECOGNITION WITH CONTINUOUS
FEATURES

The continuous HMM uses Gaussian mixture probability
density functions (pdf) to model the output pdf of the fea-
ture vector given the HMM state.

p( ~x(t)jstate i) =

JX

j=1

cij
1p

(2�)n�2i
e
�

~x(t)�~mi

2�i (3)

Since we receive only VQ indices from the client, we have
to decode the data by replacing the VQ label with the corre-
sponding codebook vector (this assumes that the codebook
vectors are known on the server side).
Having reconstructed the continuous feature vector we can
then compute additional delta and acceleration coefficients
to further improve the recognition result. The final feature
vector possesses then 42 elements (14 “original” compo-
nents plus delta coefficients plus acceleration coefficients).
The HMM topology is the same as presented in section 3,
we use (as in [5]) 3 mixtures per state for the whole word
models and 6 mixtures per state for the silence model. The
interword silence model with only one HMM state is tied to
the center state of the other silence model.



5. HYBRID TIED-POSTERIOR RECOGNIZER

The tied-posterior recognizer (see [6]) uses a neural net-
work (NN) that estimates posterior probabilities Pr(jj ~x(t))

for certain output classes j from the input vectors ~x(t).
Here, the idea is to transmit the most important posterior
probabilities over the channel and to compute the state-
dependent probabilities for decoding on the server. Since
we are using the same HMM topology as in section 3 the
output classes from the neural net are “pseudo phonemes”
that are formed by grouping 4 HMM states from the whole
word model to one unit (the silence models form one pseudo
phoneme per HMM state).
The input layer of the NN - for our experiments we used a
multi-layer perceptron (MLP) - consists of the feature vec-
tor ~f (with delta and acceleration coefficients)2 from the
current frame t and 2m (we chose m = 3) adjacent frames.
Thus, the input vector is ~x = ( ~f(t�m); : : : ; ~f(t); : : : ; ~f(t+
m)).
The resulting output layer size is nout = 48 (44 pseudo
phonemes from the word models plus 4 from the silence
models). Transmitting 48 posterior probabilities (float
values) would exceed the bandwidth, so we use only the
np highest probabilities and skip the other ones (in [6] it is
stated that the important information is stored in these prob-
abilities). Furthermore, we quantize these values using a
non-linear quantizer depicted in figure 4 that uses bnp bits
per value. To meet the bandwidth we have to choose np = 4
probability values per frame with bnp = 5 bits for the prob-
ability value plus 6 bits for the class index.

BRMLP =
4 � (5 + 6) bits

10ms
= 4:4 kbit=s

On the server side we use the inverse quantizer to receive
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Fig. 4. Non-linear quantizer (np = 4, bnp = 5)

the original values again (of course, with some quantization

2this time we compute them on the client side

error) and use these posterior probabilities as tied probabil-
ities for all HMM states according to the following equa-
tions:

p(~xjSi) =

JX

j=1

cij �
Pr(jj~x)p(~x)

Pr(j)
(4)

where Si is the HMM state, cij are the mixture coefficients
(
PJ

j=1 cij = 1 and J is the number of pseudo-phonemes.
Since p(~x) is independent of the HMM state Si it can be
omitted and (4) becomes

p(~xjSi) /

JX

j=1

cij �
Pr(jj~x)

Pr(j)
(5)

The main advantage of the tied-posteriors approach in the
DSR framework is the neural net’s ability to concentrate the
important class information in only a few probability values.
Moreover we have information about the frame context pro-
cessed in the NN and can extend this information without
changing the amount of transmitted data. Current research
activity investigates the inclusion of additional feature val-
ues e.g. extracted with the RASTA-PLP [7] algorithm.

6. RESULTS

We have evaluated the presented modeling techniques on
two databases under different noise conditions:

� The TI digits database: This database contains sin-
gle digits and digit chains spoken by native American
speakers recorded with very low background noise
(clean condition) and sampled with a frequency of
20 kHz. Additionally, we have added white Gaussian
noise (WGN) with a signal-to-noise ratio (SNR) of 6
dB and 0 dB, respectively. These conditions allow a
more distinguishable environment. The training and
test sets are identical to the ones from the original TI
digits database.

� The AURORA database [5]: This database is derived
from the TI digits database, but augmented with dif-
ferent real noise types (e.g. babble noise, airport
noise, etc.) and down-sampled to 8 kHz. The test
sets contain known (from the training) and unknown
noise types.

The following abbreviations are used in the result table:

- MFC42-MLP - 13 mel-cepstrum coefficients (includ-
ing c0) plus log. frame energy, with delta and acceler-
ation coefficients, then the quantized posterior proba-
bilities are computed

- MFC14-VQ7 - mel-cepstrum features (13 mel-cepstrum
coefficients (including c0) plus log. frame energy)



quantized to seven vector indices (System 1 in figure
2)

- MFC14-VQ7 MMI same as above, but the codebook
is generated using a MMI-NN vector quantizer

- WER - word error rate

The continuous (cont.) and the tied-posterior (tied-post.)
recognizers always use MFC42 on the server side.
From the AURORA database we have only used the mul-
ticondition training set [5]. The first column of all ta-
bles (“feature extraction”) describes the feature extraction
method on the client side, the second column (“recognizer”)
shows the type of the HMM recognizer.

feature extraction recognizer SNR
(dB)

WER
(%)

MFC14-VQ7 cont. clean 0.91
MFC14-VQ7 discrete clean 3.94
MFC14-VQ7 MMI discrete clean 3.85
MFC14-VQ7 MMI cont. clean 0.94
MFC42-MLP tied-post. clean 1.86

MFC14-VQ7 cont. 6 4.69
MFC14-VQ7 discrete 6 11.98
MFC14-VQ7 MMI discrete 6 11.61
MFC14-VQ7 MMI cont. 6 5.26
MFC42-MLP tied-post. 6 4.14

MFC14-VQ7 cont. 0 10.15
MFC14-VQ7 discrete 0 20.51
MFC14-VQ7 MMI discrete 0 20.07
MFC14-VQ7 MMI cont. 0 10.00
MFC42-MLP tied-post. 0 7.75

Table 1. Results on TI digits’ test set

feature extraction recognizer Test set
(%)

WER
(%)

MFC14-VQ7 cont. A 12.23
MFC14-VQ7 discrete A 34.96
MFC42-MLP tied-post. A 10.16

MFC14-VQ7 cont. B 14.23
MFC14-VQ7 discrete B 33.67
MFC42-MLP tied-post. B 17.03

Table 2. Results on the AURORA test sets A and B (multi-
condition training)

Comparing the tied-posterior recognizer with the con-
tinuous recognizer shows that the hybrid approach achieves
a better performance (see bold results in table 1 and 2), if
the statistical properties of the noise is known in the training
process. In case of the TI digits database the MMI approach

shows a slightly better performance than the k-means algo-
rithm if noise is added and the recognizer uses continuous
features. The discrete recognizer cannot compete with the
other algorithms at all.

7. CONCLUSION

We have compared different acoustic modeling techniques
for DSR systems. The results have been evaluated on the
TI digits database under clean and noisy conditions and on
the AURORA database. We achieved an improvement of
the word error rate of 24% relative compared to a standard
Gaussian recognizer, if using a hybrid tied-posterior recog-
nizer and artificial noise added with a SNR of 0 dB. Un-
der real noise conditions we reduced the error rate by 17%
relative if the noise conditions for training and testing are
similar.
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