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ABSTRACT

In this paper, we describe different techniques to improve natural
language call routing: boosting, relevance feedback, discrimina-
tive training, and constrained minimization. Their common goal is
to reweight the data in order to let the system focus on documents
judged hard to classify by a single classifier. These approaches are
evaluated with the common vector-based classifier and also with
the beta classifier which had given good results in the similar task
of E-mail steering. We explore ways of deriving and combining
uncorrelated classifiers in order to improve accuracy. Compared
to the cosine and beta baseline classifiers, we report an improve-
ment of 49% and 10%, respectively.

1. INTRODUCTION

Topic identification systems attempt to reproduce human catego-
rization judgments. We investigate in this paper the application
of natural language call routing, in which the caller may say what
he/she wants and is automatically routed to the right department or
directed to a human operator when the system is unable to deter-
mine the caller’s intent with certainty. In probabilistic approaches,
call routing is treated as an instance of document routing, where a
collection of labeled documents is used for training and the task is
to judge the relevance of a set of test documents. Each destination
in the call center is treated as a collection of documents (transcrip-
tions of calls routed to that destination), and a new caller request
is evaluated in terms of relevance to each destination [1].

In this paper, we first present two baseline classifiers which
have been used in the past for call routing and E-mail routing. We
first show that each of these two baseline classifiers can be im-
proved individually through a variety of techniques. Using boost-
ing, multiple classifiers of the same type can be trained on re-
weighted data. These classifiers will have errors which are not
totally correlated and can therefore be combined to produce a more
powerful classifier than any of the individual ones. Discriminative
training optimizes the classifier to achieve the minimum classifi-
cation error criterion on the training data. Finally, automatic rel-
evance feedback reformulates the user query to move it towards
relevant classes during testing.

In addition to combining classifiers of the same type, combin-
ing those of different types can also further improve classification
accuracy. Linear interpolation is a simple method for combining
classifiers. Constrained minimization, which uses three classifiers,
is also introduced; in this scheme, the decision is made by the first
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two classifiers if they agree, and arbitrated by the third when they
disagree.

2. COSINE CLASSIFIER

The cosine classifier is a popular vector-based classifier used in
information retrieval that has been adopted for natural language
call routing [1, 2]. The training process involves constructing a
routing matrix R (m � n). A list of ignore words are eliminated
and a list of stop words are replaced with place holders The rows
of R represent the m terms (e.g., words) and the columns the n
destinations. The routing matrix R is the transpose of the term-
document matrix, where rvw is the frequency with which term w
occurs in calls to destination v. Each term is weighted according to
term frequency inverse document frequency (TFIDF) and are also
normalized to unit length [3]. New user requests are represented as
feature vectors and are routed based on the cosine similarity score.

Let ~x be the m-dimensional observation vector representing
the weighted terms which have been extracted from the user’s ut-
terance. One possible routing decision is to route to the destination
with the highest cosine similarity score:

destination ĵ = argmax
j

cos �j = argmax
j

~rj � ~x

k~rjkk~xk
: (1)

3. BETA CLASSIFIER

The beta classifier is a probabilistic method which has previously
been shown to give the best results in a study on E-mail routing [4].
Each topic is represented by a word vocabulary and for each word
we compute its probability in the topic and its weight [4]. This
weight is assigned according to a function inversely proportional
to the number of topic-vocabularies in which this word is present.
A query WN

1 = w1; w2; : : : ; wN is routed to the destination j
with the highest similarity measure:

destination ĵ = argmax
j

Tj(w1; w2; : : : wk; : : : ; wN )

= argmax
j

�
�
Æ1

P
N

k=1
P (wk=Tj)(�(wk))

Æ2

N

�
; (2)

where N denotes the number of words in the query, P (wk=Tj) the
probability of wk in topic Tj , and �(wk) the weight assigned to
wk . Parameters Æ1 and Æ2 are estimated on a development corpus
to boost the accuracy. In our experiments, we obtain a value of
0:3 for Æ1, a value of 2 for Æ2 and we take into account words that
occur at least three time in the corpus. The term �j is the weight
assigned to topic Tj :

�j =

PNj

t=1 �(wt)P
J

k=1

P
Nk

t=1
�(wt)

; (3)
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whereNk represents the number of words in the kth topic-vocabulary.

4. BOOSTING TECHNIQUE

The basic idea behind this approach is to improve a weak learning
boolean algorithm [5]. The procedure of the adopted algorithm we
use is as follow:

� Input: (x1, y1), : : : , (xm, ym), where m denotes the num-
ber of documents in the training corpus, xi 2 X is a docu-
ment and yi 2 Y is the corresponding topic;

� let distributionD be initialized toD1(i) =
1
m

and classifier
set < be initialized to null;

� for k = 1; : : : ; K:

➀ train classifier ck using the distribution Dk, building
Sck(j; q) which is the similarity distance between a
topic j and a query q;

➁ compute the classifier error rate "k on the training
corpus according to the distribution Dk:
"k = Pri�Dk

[ck(xi) 6= yi] =
X

i:ck(xi)6=yi

Dk(i)

➂ compute �k = 1
2
ln
�
1�"k
"k

�
;

➃ add the classifier ck to the set < only if < is empty
or if the classifier CT , which is the combination be-
tween classifiers in < and ck , improves the accuracy
on the training corpus:

CT (q) = argmax
j

�
�kSck(j; q) +

X
ct2<

�tSct(j; q)

�

➄ update the distribution Dk:

Dk+1(i) =
Dk

Zk
�

�
e��k if ck(xi) = yi
e�k if ck(xi) 6= yi

 where Zk denotes a normalization factor chosen
so that Dk+1 will be a distribution;

� Output: the final classifier C such that:

C(q) = argmax
j

�X
t2<

�tSct(j; q)

�
:

Compared to the baseline version [6], which combines all clas-
sifiers computed at each iteration (1; : : : K), we combine only clas-
sifiers which improve the classification error rate on the training
data (cf. step 4). We found that this yields better results. Schapire
et al. proposed a theoretical analysis of the number of rounds
needed for boosting [6], but it tends not to give practical answers.
Therefore, in our case, we use heuristics to estimate this number
K: if the value �k is always positive, the value of K is set to the
smaller value of the number of features and the number of docu-
ments in each topic. We do not allow �k to be negative. These
rules yield good results.

5. RELEVANCE FEEDBACK TECHNIQUE

Researchers realized that it is hard for an average user to formulate
a “good query.” Therefore, for successful routing, aids for good
query formulation should be provided to users. Hence, one of the
most effective ways to improve the performance of a classifier is
to find a manner to improve user queries.

Assume that ~qorig represents the original user call, T the topic
number, ~ti the vector representing the tthi topic and Rel the set of

relevant topics such that jRelj = R. Hence, the classifier starts by
computing the R best topics for the user-query ~qorig, builds the set
Rel and then reformulates the query as follow [7]:

~qnew = ~qorig + �1
1

R

X
ti2Rel

~ti � �2
1

M �R

X
ti =2Rel

~ti; (4)

where �1 and �2 denote interpolation parameters (�1 + �2 = 1).
Intuitively, �1 represents how far the new vector should be pushed
toward the relevant documents, and �2 represents how far it should
be pushed away from the non-relevant ones. Therefore, the output
is the best topic given by the classifier to this new query ~qnew .

Note that this technique is applied only during the test phase.
Although, originally used to refine user requests by asking them
the rate documents, we employ it to reweight the query vector
without additional user input. We use only the relevant topics de-
rived from the initial classifier.

6. DISCRIMINATIVE TRAINING TECHNIQUE

Discriminative training has recently been proposed for natural lan-
guage call routing [8] and has been shown to be highly effective
in simplifying the classifier design and improving portability [9].
Instead of simple counting in conventional maximum likelihood
training, the minimum classification error criterion is used in dis-
criminative training of the routing matrix parameters. Classifica-
tion accuracy and robustness are improved by adjusting the mod-
els to increase the separation of the correct class from competitors.
The same framework is used in this paper.

7. CONSTRAINED MINIMIZATION TECHNIQUE

The possibility of building multiple classifiers and then combining
them to obtain a more accurate one is of considerable interest. We
consider here a combination strategy for three classifiers [10].

Suppose we have two uncorrelated classifiersC1 andC2 which
predict the topics t1 and t2 respectively for a query q. When both
classifiers agree (t1 = t2), the topic result is the same as each of
the classifiers. When they disagree, a third classifier is invoked as
an arbiter. This third classifier may be explicitly trained on dis-
agreements of the first two using minimum error training and can
also make a choice only on a subset of topics. This subset may
be computed according to the N-best topics proposed by each of
the first two classifiers or according to a confusion measure. For
exemple, when the first two classifiers disagree, we take the set of
confusible topics ST1 = fti1g in C1 and ST2 = fti2g in C2.
Then, the third classifier C3 chooses among the topics in the union
of these subsets (ST1 [ ST2).

Let t̂Ci
denote the best topic chosen by the classifier Ci to

the query q. Hence, the set of confusible topics for Ci are those
ST = ftig with a distance to t̂Ci

smaller than a threshold com-
puted according to the average distance between t̂Ci

and the cor-
rect one on the training set. In this paper we chose the Kullbach-
Leibler distance.

8. EXPERIMENTS

8.1. Database

Experiments were performed on two call routing tasks, a bank-
ing task with USAA and a UK operator task. We used the same
training and test sets collected for the USAA call routing task as
reported in [1], consisting of a total of about 4000 calls, routed to
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23 destinations. In addition, experiments were performed using all
of the training and test sets from the OASIS corpus as described
in [11], consisting of 7; 400 tokens for training (T1) and 1; 000 for
testing (T2), routed to 15 destinations. We denote this database
BT. Some results are not the same as previously reported in [9]
because a different set of unigram features is used in this paper.

Experiments are reported on both human transcriptions and
ASR recognized strings. We use real-time recognition results which
have a word error rate of about 30% for USAA and 48:1% [11] for
the BT task.

8.2. Single Classifier Improvement

The main issue we want to investigate here is the accuracy im-
provement of one single type of classifier. We present in Table 1
the classification error rate of the beta and cosine classifiers using
boosting, automatic relevance feedback (ARF) and discriminative
training (DT). We show the impact of these techniques on each
classifier separately. Hence, we do not investigate a combination
between the beta and cosine classifiers in this table.

Baseline DT Boosting ARF
BT Human Transcription
Cosine 47.3% 24.7% 35.5% 40.2%
Beta 26.6% 25.3% 25.4% 26.2%

BT ASR Recognized Strings
Cosine 53.2% 37.0% 45.7% 43.8%
Beta 38.7% 38.2% 38.3% 38.4%

USAA Human Transcription
Cosine 9.4% 6.1% 7.1% 9.4%
Beta 12% 5.5% 8.7% 12.0%

USAA ASR Recognized Strings
Cosine 12.0% 8.4% 10.0% 12.0%
Beta 14.9% 7.8% 12.0% 15.3%

Table 1. Classification error rate of cosine and beta classifiers with
the use of improvement techniques.

Results show that all the techniques improve the classifier ac-
curacy, especially discriminative training. On the BT data this
technique increases the accuracy of the cosine baseline by 30%
on ASR recognized strings and 45% on human transcription. The
improvement can be as high as 47% when we use discriminative
training on the USAA data with the beta classifier. For this reason
we present on Table 2 the impact of discriminative training when
combined with other techniques.

We think that the beta and cosine classifiers have reached a lo-
cal optimum with discriminative training, which explains the lack
of significant improvement when combined with other techniques.
We also arrive at the same conclusion as Schapire for boosting [6]:
the improvement in accuracy is clearly dependent on the data and
the classifier. The better the initial classifier, the less the improve-
ment from boosting; the cosine classifier is improved by 25%, al-
though the beta classifier is improved by only 5%. For the rele-
vance feedback technique, we also conclude that the reformulation
of the user request can help the classifier, specifically when the ac-
curacy is low. Indeed, in the case of the cosine classifier, we get
an improvement of 15% on human transcription and of 18% on
ASR recognized string. This improvement becomes small or neg-
ligible when the accuracy increases, e.g. for beta or when we use

Baseline+DT Boosting+DT ARF+DT
BT Human Transcription
Cosine 24.7% 26.3% 24.7%
Beta 25.3% 24.9% 25.2%

BT ASR Recognized Strings
Cosine 37.0% 37.3% 37.0%
Beta 38.2% 37.6% 38.0%

USAA Human Transcription
Cosine 6.1% 5.5% 6.1%
Beta 5.5% 5.2% 5.2%

USAA ASR Recognized Strings
Cosine 8.4% 8.1% 8.4%
Beta 7.8% 8.4% 8.1%

Table 2. Classification error rate of cosine and beta classifiers us-
ing discriminative train and other techniques.

discriminative training. Note that results are sensitive to the value
of the number of relevant topics; with a value of R equal to 1 or 2
we obtain the best results (cf. x5).

8.3. Multiple Classifier Combination

In the following, we investigate different methods to combine the
two classifiers beta and cosine. First, linear interpolation (LI) of
the two baseline classifiers is used. Second, we interpolate the
cosine and beta classifiers after boosting (LI+Bost).

In addition, the constrained minimization technique is investi-
gated to combine the beta and cosine classifiers: we consider C1
and C2 as the beta and cosine classifiers respectively, trained on
T1. When both classifiers agree, the topic result is the one agreed
upon. When they disagree, a third classifier C3 is invoked as an ar-
biter. This classifier is trained on the disagreements of the first two;
the classifier type for C3 is chosen to be the one with the smaller
classification error rate, which is beta in our case. This classifier
C3 proceeds only on a subset of topics computed according to a
confusion measure (cf. x7); we denote this approach CM D. An-
other experiment is also done in which C3 makes a choice between
the N-best topics from C1 and C2; denoted CM N. In our experi-
ment, the value of N is set to 2 which gives the best result.

We present in Table 3 the classification error rate of the com-
bined classifiers; we show results with and without the use of dis-
criminative training.

Experiments show that the combination between these two
classifiers is a good way to improve the performance. In fact, just a
linear interpolation between them (25:5%) on BT data increase the
accuracy of the best baseline classifier (26:6%) by 4%. Moreover,
the use of boosting (24:6%) allows us to get more than 7% im-
provement. On the other hand, constrained minimization did not
give the improvement we had expected on BT data. The reason is
the error rate of the third classifier C3 trained on the disagreement
between the cosine and beta classifiers is quite high on the entire
test set, about 65%.

Hence, to better use this technique, we build a new classifier
with a higher accuracy for C3. Let classifiers C1 and C2 repre-
sent the cosine and beta classifiers, respectively, discriminatively
trained on the entire training corpus T1. Then, let C3 represent
the better classifier between beta and cosine trained also on T1.
During classification, C3 disambiguates among only a subset of
topics computed according to a confusion measure (cf. x7). We
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LI LI+Bost CM D CM N
BT Human Transcription
cosine + beta 25.5% 24.6% 24.7% 25.0%
(cosine+beta) + DT 24.4% 24.2% 24.3% 24.6%

BT ASR Recognized Strings
cosine + beta 38.9% 37.9% 38.0% 38.2%
(cosine+beta) + DT 37.2% 36.7% 37.0% 37.3%

USAA Human Transcription
cosine + beta 10.4% 7.1% 7.8% 8.1%
(cosine+beta) + DT 5.8% 5.2% 5.8% 5.8%

USAA ASR Recognized Strings
cosine + beta 12.7% 9.1% 10.0% 10.4%
(cosine+beta) + DT 7.8% 8.7% 8.7% 8.7%

Table 3. Classification error rate of different combination tech-
niques between cosine and beta with and without the use of dis-
criminative training.

denote this combined classifier CM�. We present in Table 4 the
classification error rate of this combination as well as a linear in-
terpolation between these three classifiers (C1; C2; C3).

CM� Linear interpolation
BT Human Transcription
Combined Classifier 23.8% 24.5%
BT ASR Recognized Strings
Combined Classifier 36.5% 36.6%
USAA Human Transcription
Combined Classifier 5.5% 5.8%
USAA ASR Recognized Strings
Combined Classifier 7.8% 7.5%

Table 4. Classification error rate of three classifiers using con-
straint minimisation (CM�) and linear interpolation.

As expected, the accuracy of this combination (CM�) is bet-
ter than those cited before in Table 3 and is also slightly better (2%
on average) than a linear interpolation between the different classi-
fiers. The combination of multiple classifiers CM� (23:8%), im-
proves the baseline version of beta (26:6%) by 10% approximately
as well as the baseline version of cosine (47:3%) by 49% on the
human transcription with BT data. The use of relevance feedback
technique on this combined classifier does not result in significant
improvement. We note also that in the constrained minimization
technique, the use of a confusion measure for C3 outperforms the
accuracy of the combined classifier compared to the use of N-best
topics; this is true in all experiments we have done.

9. CONCLUSION

In this paper, we first showed that boosting, automatic relevance
feedback, and discriminative training can be used to improve the
accuracy of a single classifier. Experiments showed a significant
improvement in the accuracy of the system compared with base-
line: 15% with automatic relevance feedback, 25% with boosting,
and 45% with discriminative training. In general, the better the ini-
tial classifier, the less the improvement from these techniques. Dis-
criminative training seemed to give better performance than boost-
ing or relevance feedback. We also reported results of combin-

ing multiple types of classifiers using linear interpolation and con-
strained minimization. A further improvement of approximately
3% was obtained when three different classifiers were combined
using either linear interpolation or constrained minimization. Al-
though constrained minimization did not give significantly better
accuracy than linear interpolation, a different training method for
the arbitrating third classifier may give better results. One prin-
ciple which can be drawn from the results in this paper is that a
combination of uncorrelated classifiers can improve classification
accuracy. Uncorrelated classifiers can be derived through different
models or feature sets (such as cosine or beta) or through training
with re-weighted data sets (boosting).
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