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ABSTRACT

This paper shows the impact of speaker normalization tech-
niques such as vocal tract length normalization (VTLN) and
speaker-adaptive training (SAT) prior to discriminant fea-
ture space transforms, such as LDA. We demonstrate that
removing the inter-speaker variability by using speaker com-
pensation methods results in improved discrimination as mea-
sured by the LDA eigenvalues and also in improved classi-
fication accuracy (as measured by the word error rate). Ex-
perimental results on the SPINE (speech in noisy environ-
ments) database indicate an improvement of up to 5% rel-
ative over the standard case where speaker adaptation (dur-
ing testing and training) is applied after the LDA transform
which is trained in a speaker independent manner.

We conjecture that performing linear discriminant anal-
ysis in a canonical feature space (or speaker normalized
space) is more effective than LDA in a speaker indepen-
dent space because the eigenvectors will carve a subspace
of maximum intra-speaker phonetic separability whereas in
the latter case this subspace is also defined by the inter-
speaker variability. Indeed, we will show that the more nor-
malization is performed (first VTLN, then SAT) the higher
the LDA eigenvalues become.

1. INTRODUCTION

One of the most commonly used feature extraction meth-
ods in speech recognition consists in first computing a fixed
number of cepstral coefficients for every speech frame (usu-
ally 13) and then augmenting the feature vector with dy-
namic information from the adjacent frames. On the one
hand, the cepstral feature extraction process is well mo-
tivated by mimicing the operations that are carried out in
the human auditory system, however, there is no explicit at-
tempt to discriminate between the different phonetic classes.
On the other hand, one could argue that as the fundamental
problem in speech recognition is to discriminate between
phonetic classes on the basis of the observed feature vec-
tor, the feature extraction process should be designed so as
to achieve this goal. One way to incorporate both of these

goals is to apply a discriminant linear projection on the ex-
tracted cepstra that helps to discriminate between the pho-
netic classes.

Linear discriminant analysis [1, 2] is a standard tech-
nique in statistical pattern classification for dimensionality
reduction with a minimal loss in discrimination. Straight-
forward implementations of LDA to project the cepstral fea-
tures into a discriminant feature space have however had
only a limited amount of success because the transforma-
tions that are produced by LDA are often inconsistent with
the assumptions made in speech recognition systems. Chief
among these is the assumption that the pdf of the LDA trans-
formed features can be modeled with diagonal covariance
gaussians for the different classes. Consequently, recent
work [9, 3, 4] has focused on designing the projection such
that this assumption is satisfied. For instance, when this as-
sumption is directly incorporated in a discriminant objective
function [9], it leads to a ”maximum likelihood discrimi-
nant” projection that provides significant improvements over
the baseline system.

All of this prior work, however, is characterized by the
fact that the projection is computed to perform dimensional-
ity reduction at the first (speaker-independent) stage of the
processing. Now, the main objective of discriminant pro-
jections is to minimize the variation of the projected fea-
ture within a particular class, while maximizing the distance
between the projected means of the different classes. As
the training data for a speaker independent system is com-
prised of speech from a number of different speakers, the
variation of the projected features within a particular class
has an inherent component as well as an inter-speaker com-
ponent. For the purposes of discriminating between pho-
netic classes, we are really interested only in focusing on
the inherent variation, rather than the inter-speaker varia-
tion. In order to achieve our objective, we can take the help
of speaker adaptation techniques [7, 8] that are focused on
improving the performance of speech recognition systems
by ”canonicalizing” the feature space i.e. by eliminating as
much of the inter-speaker variability as possible. This is in
effect equivalent to first ”canonicalizing” the feature space
with some speaker normalizing scheme and then computing



a discriminant transform that separates the phonetic classes
out in the canonicalized space.

In this paper, we demonstrate that removing the inter-
speaker variability by using speaker compensation methods
results in improved discrimination as measured by the LDA
eigenvalues and also in improved classification accuracy (as
measured by the word error rate). Experimental results on
the SPINE (speech in noisy environments) database indicate
an improvement of up to 5% relative over the standard case
where speaker adaptation (during testing and training) is ap-
plied after the LDA transform which is trained in a speaker
independent manner.

The paper is organized as follows: in section 2 we de-
scribe the formulation for intra and inter-speaker LDA and
show that the leading eigenvalues of LDA improve when the
feature space is canonicalized by speaker normalization. In
Section 3 we describe the experiments and results and sec-
tion 4 provides a final discussion.

2. INTRA AND INTER-SPEAKER LDA

Let the labeled acoustic training data be �������
	����	������������������ ,
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Now the within-class covariance N of the data is given by

N 0 9+ 2 , +G,�=>,<0 9+PO 2 ,�. / +G,�. /=>,�. / K 2 , +-,
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and hence the total covariance is given byRS0 N K HJT-0 9+ 2 ,�. / + ,�. / = ,�. / K HJI K HJT (2)

In standard Linear Discriminant Analysis (LDA) one
finds a projection matrix UV�W� �>X�Y � of full row rank such
that the ratio of determinants of the projected total covari-
ance and the projected within-class covariance is maximized,
i.e.:

U[Z]\?^ 0`_[a�bdce_]fg!h]i jlk�m*npo U R U E oo UdN#U E o (3)

The solution to (3) can be found by solving the gener-
alized eigenvalue problem:

R � 0�q N#� or equivalently, by
finding the r largest eigenvalues of Nps � R (assuming N
is not rank defficient). The transposed eigenvectors corre-
sponding to these eigenvalues will form the rows of the pro-
jection matrix U . The maximum value of the objective func-
tion (2) corresponds to the product of the r largest eigenval-
ues and for r 0ut

this product is equal to the ratio of the
determinants of

R
and N .

Our proposed algorithm is to compute the LDA after a
speaker-normalization transformation (like SAT or VTL).
Analytically studying this effect for SAT or VTL seems
very difficult. Nevertheless, to gain insight into what the
algorithm does we study what happens when the speaker-
normalization transformation is ideal. In the ideal case it is
reasonable ot assume that the normalized-data is such that
the all the speaker means for a given class are all identi-
cal, i.e., : ,�. / 0 : , and therefore

H I, 0wv 	Fx��y�{z . The
within-class and total covariance of the normalized data are
therefore (from Eqn. 1)N � 0 9+ 2 , +-,�=>,<0 9+ 2 ,�. / +-,�. /M=>,�. / 	 R � 0 N � K HJT

(4)
What is the relationship between the LDA’s before and after
ideal speaker-normalization? That is, what is the relation-
ship between the following two ratios:| Standard LDA: o U R U E oo UdN#U E o and

| Speaker-Normalized LDA: o U R � U E oo U�N � U E oThe main result of this paper is the following inequality
(that follows from Proposition 1 below):

o R oo N o 0 o N K H T oo N o 0 o N � K H I K H T oo N � K H I o } o N � K H T oo N � o 0 o R � oo N � o(5)
which implies that, for a full rank transformation, the objec-
tive function for normalized LDA is always higher than that
for standard LDA.



Let ~ the set of all s.p.d. matrices of order � , that is:~W��������� � �?�l�C� �{�����<�
���A���D�`�l�F�����y� ����� . Define
the binary relation “ � ” on ~S�L~ by ����� if �`���p��~ ,
that is, if their difference is an s.p.d. matrix. Two simple
lemmas are immediate.

Lemma 1 If ����� then for any non-singular matrix �
(not necessarily s.p.d.) (i) �W W�p�%�# �� , (ii) �¡�¢�£�¤��¥�¢�-� and (iii) �§¦©¨£�W�¡¦©¨ .
Proof: As (i) is evident, we will only prove (ii) and (iii).
For (ii), we have ���ª�¥�<«��¬�G�-
�®�¬��«��®��F�1«��¬�G�-
�®�¬�¯ �°«����e�- ¯ ��� because �y��� is s.p.d. For (iii), the proof
follows from the simultaneous diagonalization of � and �
(as in Lemma 2) and from (ii). ±
Lemma 2 If �{�²� then � �-�´³�� �L� .
Proof: Indeed, �¶µ·���#�V� is s.p.d. and according to [6]
p. 312, case 3, there exists a non-singular ¸ such that���S¸¡¸¡� and �#�%¸¡¹§¸¡� where ¹º�S»d¼5½d¾�«À¿ ¨ �!ÁÂÁ!ÁÂ��¿ �  .
Then � �-�´³{� �¬��Ã � ¹� VÄ��Å³#� Ä�� which is true because of
the positivity of the ¿�Æ ’s. ±
Proposition 1 If �J���§�M���¬� � �?�l� are three symmetric pos-
itive definite (s.p.d.) matrices then the following inequality
holds: � �Ç V�� ²���� �� Ç��� È � �� V�¬�� �-� (6)

Proof:� �² V�# Ç���� �² Ç��� È � �² V�¬�� �-�Ã �É«��� Ç�¡�¦©¨[«��² Ç�� ²�¡!� È � �J¦©¨[«��² Ç�GÂ�Ã � Ä® %«��� Ç�¡�¦©¨!�L� È � Ä® V�J¦©¨��¬�Ã � �ËÊÌ �Í� Ä£ %«��� ²�¡�¦©¨�L�Í� �§¦ ÊÌ � È � �DÊÌ �É� Ä® Ç�¡¦C¨��¬�É� ��¦�ÊÌ �Ã � Ä® Ç�DÊÌ «��² ²�¡M¦C¨��ÊÌ � È � Ä® Ç�DÊÌ �J¦©¨!�DÊÌ � (7)
Now, �² ��Î�`� implies � ¦©¨ �{«��� ��¡ ¦C¨ from lemma
1 (iii). Therefore, � ÊÌ �J¦©¨�� ÊÌ �p� ÊÌ «��% S�¡�¦©¨!� ÊÌ from
lemma 1 (ii). Finally, Ä� {�ËÊÌ �¡¦C¨��ÊÌ �ÏÄ� {��ÊÌ «��� �¡M¦C¨� ÊÌ from lemma 1 (i). The proof follows from apply-
ing lemma 2 to the resulting matrices. ±

3. EXPERIMENTS AND RESULTS

The speech recognition experiments were conducted on the
SPINE (speech in noisy environments) database. The speech
data consists of conversations between two communicators
working on a collaborative, Battleship-like task in which
they seek and shoot at targets. The SPINE training data
consists of 12 hours of conversation, including 20 speakers
(10 speaker pairs) in four noise environments (quiet, office,
humvee, and air craft carrier). The vocabulary size and per-
plexity are fairly low (1.2K words and 18 respectively) but
the difficulty of the task comes from the various simulated
noise environments.

Speech is coded into 25 ms frames, with a frame-shift of
10 ms. Each frame is represented by a feature vector of 13
Mel frequency-warped cepstral coefficients (MFCC) com-
puted from a 24-filter Mel filterbank spanning the 0 Hz - 4.0
kHz frequency range. Every 9 consecutive cepstral frames
are spliced together and projected down to 60 dimensions
using linear discriminant analysis (LDA). The range of this
transformation is further diagonalized by means of a maxi-
mum likelihood linear transform (MLLT) [3].

We have experimented with various systems of simi-
lar size both in terms of the number of context-dependent
HMM states (roughly 1800) and in the number of diagonal
Gaussian mixture components (around 25K 60-dimensional
Gaussians). The systems differ depending on where the
LDA projection is applied. For the first system, LDA is
applied on the speaker-independent MFCC frames. For the
second system, the transform is applied on vocal tract length
normalized features and for the third system an additional
speaker-adaptive training step is performed after VTLN but
before LDA. In other words, for the third system, we model
117 dimensional features obtained by splicing every 9 con-
secutive 13 dimensional VTLN-warped cepstral frames. This
space is first diagonalized by means of a Ð[Ð�ÑG�ËÐ[Ð*Ñ MLLT
transform. We then seed the canonical model for SAT with
11K 117-dimensional Gaussians obtained by clustering these
features. Next, we compute a feature space transform [5,
10] for the training data for each speaker, which maximizes
the likelihood of the transformed data given the canonical
model. We then estimate a Ò[�-��Ð[Ð�Ñ LDA transform on the
(per speaker) linearly warped, VTLN-warped features and
an MLLT transform in the resulting 60 dimensional space.
The effect of these various speaker normalization steps on
the LDA eigenvalues is illustrated in figure 1. This appears
to be consistent with the results of the previous section.

The test set consists of the first 18 converations (36 speak-
ers) of last year’s evaluation set and has 1.5K utterances
(8.3K words). We will report detailed results only for the
last two systems (LDA applied after VTLN and LDA ap-
plied after VTLN+SAT) as these systems gave the best per-
formance. The rows of table 1 correspond to these two
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Figure 1: The 20 largest LDA eigenvalues for the SI, VTLN
and SAT feature spaces.

Transform No adaptation AD1 AD2
VTLN-LDA 28.0% 22.7% 22.1%
VTLN-SAT-LDA 28.8% 22.5% 21.1%

Table 1: Word error rates for the various systems/passes.

systems and the columns to the various adaptation steps.
No adaptation means the baseline performance after VTLN.
The first adaptation step consists in computing a 60 and re-
spectively, a 117 dimensional feature space MLLR trans-
form. For the SAT+LDA case, we have the luxury of also
adapting the 60 dimensional features after SAT-LDA which
we referred to as the second adaptation step. In order to
make a fair comparison with SAT-LDA, we perform the 60-
dimensional adaptation step twice for VTLN-LDA (using
the updated decoding hypothesis from the previous adapta-
tion pass).

4. CONCLUSION

Analyzing the results from the previous table, several con-
clusions can be drawn: the baseline performance of VTLN-
LDA is better than that of SAT-LDA because, for the latter,
there is a mismatch between the canonical space in which
the transform was trained and the actual (untransformed)
adaptation data. However, after the first MLLR transform,
SAT-LDA appears to be slightly more effective than VTLN-
LDA although the statistical significance of the difference
can be questioned. The main difference between the two
is apparent after the last adaptation step where iterating the
feature space adaptation transform for VTLN-LDA does re-
sult in smaller gains than for SAT-LDA. This may be ex-

plained by the fact that the second transform for SAT-LDA
makes use of the full-resolution 60-dimensional model (25K
Gaussians) whereas the first (117-dimensional) transform
needed a much more coarser canonical model (11K Gaus-
sians) so there may be a complementarity effect between the
two transforms.
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