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ABSTRACT

In large vocabulary speechrecognition,out-of-vocabulary
wordsareanimportantcauseof errors.We describea lexi-
cal filler modelthatcanbeusedin asinglepassrecognition
systemto detectout-of-vocabularywordsandreducetheer-
ror rate. Whenrescoringword graphswith betteracoustic
models,word fillers causea combinatorialexplosion. We
introducea new technique,usingseveral thousandlexical
fillers, whichproduceswordgraphsthatcanberescoredef-
ficiently. On a large Frenchvocabulary continuousspeech
recognitiontask,lexical fillers achievedan OOV detection
rateof 44% andallowed a 23% reductionin errorsdueto
OOV words.

1. INTRODUCTION

Out-of-vocabularywordsareanimportantproblemin many
speechrecognitionapplications.Increasingvocabularysize
helpsalleviatetheproblem,but will neversolveit sincelan-
guageevolves,andnew wordsconstantlyappear. Reliable
detectionof OOV wordswould be a bettersolutionto im-
proveperformanceandrobustnessof thetechnology.

Theproblemis worsein continuousspeech,whereasin-
gle out-of-vocabulary word will oftencauseseveral recog-
nition errors. Estimatesrangefrom 1.2 errors/OOV word
on theEnglishlanguageWall StreetJournaltaskto 2.2 er-
rors/OOV word on a similar Frenchtask[1, 2]. In French,
particularly, typical OOV ratemay rangeover 5-6% for a
20,000word vocabulary [2]. In this situation, detecting
OOV wordsto reduceerrorsto oneper OOV word would
allow a significantreductionof theoverallerrorrate.

The most commonapproachto OOV word detection
consistsin explicitly modelingout-of-vocabularywordsby
providing someform of pronunciationanda representation
in thelanguagemodel.Proposedmodelsrangefrom“fillers”
or “genericwordmodels”thatallow any phoneticsequence,
to detailedsub-lexical models.Themainobjectiveof these
modelsis to cover all possibleOOV word pronunciations,

while providing someconstraintsin the form of phoneN-
grams[3] or morpho- phonemicconstraints[4].

In this work, we proposea simplermodelthatdoesnot
aim to modelall possibleOOV pronunciations,andavoids
modelingin-vocabularypronunciations.Thisapproachkeeps
tight lexical constraintsbothon in- andout- of- vocabulary
words. Themodelis a filler word providedwith thesubset
of pronunciations,takenfrom a largerdictionary, which do
not occur in the task vocabulary. Thus the model is con-
strainedbothby thetasklexiconandthelargerlexicon.

Our experimentswith larger lexicons show that, con-
trarytoexpectation,reasonablesizeswill providegoodOOV
models.We first presentresultson a largevocabulary, con-
tinuousspeechrecognitiontaskin French,thatshow theef-
fectivenessof lexical constraintswhenappliedin a single
passrecognitionsystem. In addition,we examinea prob-
lem that ariseswhen OOV modelsare usedin multi-pass
systems.In thesesystems,whenlargeacousticmodelsare
usedfor rescoring,OOV modelsthat do not imposetight
constraintson pronunciationwill requirevery large recog-
nition networksanda costlysearch.We addressthis prob-
lemin moredetailin Section2.2andweproposeasolution,
involving multiple lexical fillers, thatallowswordgraphsto
berescoredefficiently.

2. LEXICAL FILLERS

The ideaof usinga largerdictionaryfor OOV wordsis not
new. It hasbeenusedwith successin largevocabularytasks,
for examplein [2]. In thissystem,64K worddictionaryand
languagemodelwereused,andthe recognizeroutputwas
mappedto thetaskvocabularyof 20K words.

In ourapproach,wealsousealargerdictionary, but only
to providepronunciationsto afiller wordmodel.Therecog-
nition vocabulary is augmentedby one word, namelythe
filler word,bothin thedictionaryandthelanguagemodel.

OurOOV modelalsodiffersfrom agenericfiller in that
it only allowsarestrictednumberof pronunciations,instead



of all possiblepronunciations,but mostimportantlyit does
notmodelin-vocabularywords.As will beshown in theex-
perimentalresults(section3), this characteristiclimits the
degradationof in-vocabularywordrecognitionobservedfor
genericfiller models[3]. In addition,strongconstraintsre-
ducenetwork sizeandsearcheffort duringrecognition.

2.1. Singlelexical filler

The closedvocabulary is augmentedwith one additional
filler word. Possiblepronunciationsfor this word areob-
tainedfrom all thepronunciationspresentin a largerdictio-
narybut not presentin thetaskdictionary. A typical lexical
filler couldhavebetween40K and100Kpronunciations.

Thefiller wordis alsoaddedto thelanguagemodel,with
a unigramprobability chosento reflect the probability of
OOV wordsin the training corpus.Higher N-gramproba-
bilities aresetto 0 for thefiller word; otherwise,thesearch
network becomesunmanageablylarge,sinceseveraltensof
thousandsof pronunciationareassociatedwith eachappear-
anceof the filler word in the languagemodel. Contraryto
genericfiller models,wheretheunigramprobabilityis cho-
senmanuallyanddeterminesthe numberof correctdetec-
tions and falsealarms,constraintson pronunciationmake
the lexical filler behavior mostly insensitive to the particu-
lar valueusedfor its unigramprobability(seesection3.2).

2.2. Multiple lexical fillers

Today’s laboratoryspeechrecognitionsystemsarealmost
always multi-passsystems. The goal of the first passin
thesesystemsis to provide the highestinclusion rate and
lowest searcheffort for the secondpass. Hypothesesare
recordedin the form of a word graphor a N-best list of
word hypotheses.Using wordsasthe intermediateunit is
usuallya goodcompromise:smallerunits suchasphones
would not retainmuchmoreinformation,sincemostwords
havevery few pronunciations.

Whena filler is used(genericor lexical), however, the
pronunciationthathasbeendeterminedat greatcostby the
first passis notrecordedin thewordgraph.Theinformation
aboutthebestpronunciationis lost. Whenthewordgraphis
usedfor rescoringwith differentacousticmodels,thewhole
pronunciationnetwork correspondingto eachfiller present
in the graphhasto be searchedagain,with even costlier
models.

Theideabehindmultiple lexical fillers is to retainsome
of thepronunciationinformationin thefiller identity itself,
by mergingpronunciationsinto classesandusingadifferent
filler for eachclass.In theexperimentsreportedbelow, we
definedpronunciationclassesasfollow:

Two pronunciationsare in the sameclassif,
whenmappingall vowels to V andall conso-

nantsto C, they have the samesequenceof V
andC symbols.

Thusthewordssaltimbanqueet dégringolewill berep-
resentedby the samefiller, becausetheir pronunciations
belong in the sameclass(since they both correspondto
the CVCCVCVC symbol sequence).That particularway
of groupingpronunciationsyields a large numberof filler
words,typically several thousand,eachonehaving a small
numberof possiblepronunciations.

In the languagemodel,all filler wordsareassignedthe
sameunigramprobability as the single lexical filler, and
no higher order N-gram is added. The first passsearch
effort remainsessentiallythe samefor single or multiple
fillers, sincethesetof pronunciationsto besearchedis the
same.But thesecondpasssearcheffort for multiple fillers
is reducedin proportionto the numberof pronunciations
perfiller, which is muchsmallerwhenthousandsof lexical
fillers areused.

3. EXPERIMENTS

The following experimentswereperformedon a standard
Frenchlanguage,large vocabulary dictation task from the
AUPELF’97 evaluation[5, 6], which hasa vocabulary of
20,000words. Acousticmodelsweretrainedon BREF-80
anda subsetof BREF-Total, containing53 hoursof speech
from 100speakers. Acousticparameterswere12 mel- fre-
quency cepstralcoefficientsplus energy, and their deriva-
tives. Cross-word triphoneacousticmodelswere trained
with 3981outputdistributions,eachbeinga Gaussianmix-
turewith 32componentsandsharingasingleglobalfull co-
variancematrix. For rescoringexperimentsthesamemod-
els with 64 componentsper mixture wereused. Note that
modelswerenotgender-dependent,andthatnospeakeradap-
tation(suchasVTLN or MLLR) wasused.

Thespeechrecognitionsystem[7] wastransducer-based,
with rulesfor liaisonbothin trainingandrecognition.Trans-
ducerswere built andmanipulatedusing the FSM library
tools[8].

Languagemodelswere trainedon 168M words of Le
Monde; their sizeandperplexity areshown in Table1. A
small homophoneclasstrigram modelwasusedto gener-
ate the word graphs(more exactly the homophoneclass
graphs). Whenrescoring,a larger word trigram language
modelwasused,andhomophoneclassgraphsweremapped
to wordsby compositionwith a homophone-class-to-word
transducer.

The test set contains576 sentences,with a frequency
weightedOOV word rate of 3.78%,andover 40% of the
sentencescontainOOV words.Only 16.5%of OOV words
arepropernames.



LM 2-grams 3-grams Voc. size Ppx

Graphgen. 247K 78.5K 13.5K 128
Rescoring 2.8M 10.6M 20.0K 87

Table 1. Size,vocabulary anddevelopmentsetperplexity
of languagemodelsused.

3.1. Baseline

We first needa propermeasurementof the effect of OOV
wordsin thecaseof continuousspeech.As mentionedin the
introduction,eachOOV word tendsto causeseveralerrors,
andthis is preciselythemainproblemthatwe try to solve.
In order to estimatehow many errorsarecausedby OOV
words,we measurethe accuracy separatelyon a subsetof
344testsentenceswhichcontainonly in-vocabularywords.
Thisgivesanestimateof theerrorrateif therewerenoOOV
words(first line of Table2). Assumingthat otheraspects
of this subsetare representative of the whole corpus,we
cansubtractthis errorratefrom thewholecorpuserrorrate
(secondline of table)to getanestimateof theerrorratedue
to OOV words(third line of table).

Naturally, thein-vocabularysubsetis not exactly repre-
sentativeof thewhole. In particular, thefactthatit contains
no OOV wordsmay be associatedwith a betterperplexity
(see[2]); in that casethe subseterror ratewill underesti-
matethereal in-vocabularyerrorrate,leadingto anoveres-
timateof the error ratedueto OOV. So this estimatemust
not be takenasanabsolutenumber. Nevertheless,we will
usethe estimatethroughoutthe restof the paperfor com-
parisonpurposes,sincerelative improvementson thesame
OOV subsetarestill meaningful.

Sentences Words Err or rate

In-vocabularyonly 4913 17.5%
All sentences 8647 24.7%

Errorsdueto OOV words 7.2%

Table 2. EstimatedOOV errorrate,baselinesystem.

TheOOV ratebeing3.78%,weestimatethateachOOV
causesonaverage1.9errors(7.2%/3.8%).Thisis consistent
with resultson this taskreportedelsewhere[2].

3.2. Singlefiller experiments

The pronunciationsfor the single filler experimentscame
eitherfrom a 64K word dictionaryor a 600K word dictio-
nary. The 64K dictionarywasgeneratedmostly automat-
ically from grapheme-to-phonemerules,with a small per-
centageselectedautomaticallyfor correctionby hand[7].
The 600K dictionary pronunciationswere generatedwith
the samerules applied to the 600K most frequentwords

found in the LM training corpus. For the 64K dictionary,
the filler had40K pronunciations,while for the 600K dic-
tionary, the filler had107K pronunciations.Noneof these
pronunciationsoccurredin the20K taskdictionary.

Condition Overall
WER

Due to
OOV

OOV
detect

IV
false

No filler 24.7% 7.2% 0% 0%
64K dict filler 23.0% 5.48% 44.0% 0.52%
600Kdict filler 22.8% 5.46% 41.0% 0.28%

Table 3. Overallworderrorrate,errorsdueto OOV words,
OOV correctdetectionand in-vocabulary falsealarm for
singlelexical filler.

Table3 shows the word error rateobtainedfor the no
filler, 64K dictionaryand600K dictionaryconditions.The
errors due to OOV were estimatedas for Table 2. The
lasttwo columnsshow theOOV detectionrate,whichmea-
sureshow many OOV words in the utteranceswere cor-
rectly recognizedas a filler word, and the IV falsealarm
rate,which measureshow many in-vocabulary wordswere
incorrectlyrecognizedasfiller words.Notethatdeletionsof
OOV wordsarecountedandcontributeto decreasetheOOV
detectionrate;similarly, insertionsof filler wordscontribute
to increasetheIV falsealarm.

A good fraction of OOV words are correctlydetected
(44%),evengiventhe rathertight constraintson their pro-
nunciation.We alsoobservea very low falsealarmratefor
in-vocabulary words. OOV detectionallows theoverall er-
ror rate to go from 24.7% to 23.0%, mainly by reducing
insertions.Lookingonly at theerrorsdueto OOV, we seea
dropfrom 7.2%to 5.5%,which representsa relative reduc-
tion of morethan23%.

Interestingly, using a much larger dictionary of 600K
words did not significantly decreasethe overall error rate
comparedto the 64K dictionary. It seemsthat,contraryto
expectation,it is not necessaryto usea very largenumber
of pronunciationsto capturetheessenceof OOV words.

For genericfillers, the operatingpoint (OOV detection
rate vs. IV falsealarms)has to be adjustedby tuning a
filler penalty. With lexical fillers, we found that changes
to theunigramprobabilityof thefiller wordhadlittle effect.
Changingtheunigramprobabilityby 9 ordersof magnitude
shiftedtheOOV detectionratefrom 33%to 44%while the
IV falsealarmrateonly wentfrom 0.13%to 0.53%.Thisin-
sensitivity to theunigramprobabilitymakesasystemusing
lexical fillers morerobustto changesin thelanguagemodel.

Ourresultsarenotdirectlycomparablewith thosein [3]
aboutgenericfillers, which wereobtainedon a smallerEn-
glish vocabulary of 2000words. Nevertheless,it is inter-
estingto notethata genericfiller model,at a similar OOV
detectionrate of 46.8%,produceda higher in-vocabulary



falsealarmrateof 1.3%.
Notethata largertaskvocabularywill increasetheover-

lapbetweenin-vocabularypronunciationsandagenericfiller.
Conversely, a smallertaskvocabulary will result in fewer
constraintsfor alexical filler. Accordingly, wecanprobably
expectgenericfillers to performbetteron smallvocabular-
iesandlexical fillers to performbetteronlargevocabularies,
althoughthis would requireexperimentalverification.

3.3. Multiple filler experiments

We generatedword graphswith themodelsusedin thesin-
gle filler experiments.To rescorethemusingnew acoustic
andlanguagemodels,we built a recognitionnetwork using
eachsentenceword graphasa constrainton the language
model.We foundout thatalthoughword graphswith fillers
areaboutthe samesizeasword graphswithout fillers, the
recognitionnetwork, which includesthepronunciationand
acousticmodel information, increasesby a factorso large
that we could generateit for a few sentencesonly, due to
thelargenumberof pronunciationsperfiller.

Analysisrevealedthateachoccurrenceof a filler word
in thegraphrequiredtheinclusionof 40K pronunciationsin
therecognitionnetwork. Eventhoughfiller wordsrepresent
only a few percentof all word grapharcs,andnetwork op-
timization reducesany unnecessaryduplication,networks
couldstill bepotentiallya thousandtimeslargerthanthose
withoutfillers.

When multiple fillers are used,however, the number
of pronunciationsfor eachfiller word that appearsin the
word graphcanbe reducedarbitrarily. After groupingthe
64K dictionary pronunciationsaccordingto their CV pat-
terns(seesection2.2),we obtained2492filler words,each
onehaving 16 pronunciationson average.Therecognition
networksobtainedfrom themultiple filler word graphsare
manageable,being4 timeslargerthanwithoutfillers.

We estimatethe graphinclusion from the error rateof
the besthypothesiscontainedin the graph. For the word
graphsgeneratedwith the baselinesystem(no fillers), this
errorratewas5.8%comparedto 5.5%for theword graphs
with fillers. Table4 shows theresultsobtainedafterrescor-
ing theseword graphswith acousticmodelsof 64 compo-
nentspermixture.

Condition Overall
WER

Due to
OOV

OOV
detect

IV
false

No fillers 19.4% 7.4% 0% 0%
2492fillers 18.0% 6.0% 31.8% 0.11%

Table 4. Error ratesfor wordgraphrescoring.

Error rate reductionsare not as large as in the single
passsystem.We mustnote,however, thatwe experimented
only with word graphsgeneratedat anoperatingpoint with

a rathersmall OOV identificationrate(35.5%with 0.17%
IV falsealarm). Determiningthe bestoperatingpoint for
thefirst passto producethebestresultsfor thesecondpass
will requirefurtherexperimentation.

4. CONCLUSION

Wedescribedalexical filler for out-of-vocabularywordmod-
eling. It doesnotaccountfor all possiblepronunciationsbut
explicitly avoidsmodelingin-vocabularypronunciations.We
also introducedmultiple lexical fillers in order to produce
wordgraphsthatcanbeefficiently rescoredin asecondpass
with morecomplex acousticmodels.Our experimentson a
20K word Frenchtaskshow that lexical fillers, achieve an
OOV detectionrateof 44%(at a falsealarmrateof 0.5%),
allowing a 23% relative reductionof errorsdue to OOV
words.
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aupelfd’evaluationdessyst̀emesde dictéevocale: or-
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