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ABSTRACT
The need for human expertise in the development of a speech un-

derstanding system can be greatly reduced by the use of stochastic
techniques. However corpus-based techniques require the annota-
tion of large amounts of training data. Manual semantic annotation
of such corpora is tedious, expensive, and subject to inconsisten-
cies. This work investigates the influence of the training corpus
size on the performance of understanding module. The use of auto-
matically annotated data is also investigated as a means to increase
the corpus size at a very low cost.

First, a stochastic speech understanding model developed using
data collected with the LIMSI ARISE dialog system is presented.
Its performance is shown to be comparable to that of the rule-based
caseframe grammar currently used in the system. In a second step,
two ways of reducing the development cost are pursued: (1) re-
ducing of the amount of manually annotated data used to train the
stochastic models and (2) using automatically annotated data in the
training process.

1. INTRODUCTION
In our view the role of the speech understanding module

in a dialog system is to extract the literal meaning of the
user’s query. Several well established ways of performing
this extraction with relatively good performance exist. How-
ever, despite efforts made to ensure portability over domains
and languages, defining a rule-based grammar for a new un-
derstanding component still requires extensive human exper-
tise. During the last decade, several stochastic approaches
for speech understanding have been proposed to reduce this
need for human expertise [1, 2, 3].

In the LIMSI ARISE system, a rule-based caseframe
grammar approach has been successfully applied to the
speech understanding problem [7]. In this work we evaluate
a stochastic understanding model developed using a corpus
of dialogs collected with the LIMSI ARISE system. This
work has given us the opportunity to address several issues
which, to our knowledge, have not already been openly dis-
cussed. The first is: how sensitive is semantic component to
tuning on a particular data set. A comparative evaluation is
performed to address this question using both the rule-based
and stochastic approaches.

A second important point is: what is the amount of data re-

quired to obtain good performance with a stochastic model?
Effectively, if the need for human expertise is a weakness
of rule-based approaches, the semantic annotation of a large
amount of data, needed for stochastic approaches, is also a
costly procedure. Therefore we have investigated the influ-
ence of the training corpus size on the performance of the
understanding model in an attempt to determine the mini-
mum amount of data required to ensure reasonable perfor-
mance, thus reducing the development cost. A third ques-
tion addressed is whether or not the development cost can
be reduced by automatically annotating data to increase the
training corpus size at a low cost.

The paper is organized as follows. The next section
overviews the LIMSI ARISE task. In Section 3 a glass-
box evaluation paradigm based on a Concept-Value repre-
sentation of the domain is introduced. Then, the basis of the
stochastic understanding approach is presented in Section 4.
Finally, after the corpus description in Section 5, the experi-
ments are reported in Section 6 .

2. THE LIMSI ARISE TASK

The LIMSI ARISE system [7] allows users to obtain
travel information from the French national railway’s static
timetables by telephone. The system also provides informa-
tion about services offered on the trains, reductions, fares,
and fare-related restrictions. The system is composed of
a speaker-independent real-time continuous speech recog-
nizer, and components for natural language understanding,
dialog management, database access and response genera-
tion.

The speech recognizer transforms the input signal into the
most probable sequence of words and then forwards it to the
natural language understanding component which carries out
a literal understanding of the text string using a caseframe
analysis and then reinterprets the query in the context of the
ongoing dialog. The dialog manager ensures the commu-
nication between the user and the DBMS. If enough infor-
mation is present, a pseudo-SQL request is generated to the
DBMS. The result is given to the natural language response
generation module and then to a synthesizer to provide vocal



User query dans la matinée et c’est pas Croisic c’est Roissy

Recognized sentence dans la matinée et pas Croisic Roissy
Concept sequence +/range-dep +/null -/m:mode -/place +/place

Value normalization matin Croisic Roissy
CVR +/range-dep matin

-/place Croisic
+/place Roissy

Table 1: Example of the semantic decoding for the sentence “In the morning and it’s not Croisic it’s Roissy”.

feedback.
The current understanding component carries out a rule-

based caseframe analysis to determine the meaning of the
query. Keywords are used to select the appropriate case
structure. Case markers are used to provide syntactic con-
straints. In “de Paris à Marseille”, for example, the prepo-
sition de designates Paris to be the departure town, and à
designates Marseille to be the arrival town. Pre- and post-
case markers which are not necessarily located adjacent to
the case provide information useful to determine the context
of the case. Sentence parsing is done by first selecting the
corresponding caseframe using keywords and then building
a semantic frame representation of the meaning of the sen-
tence by instantiating its slots.

3. SEMANTIC ANNOTATION

A task-specific semantic representation has been defined
for the ARISE domain. The feasibility of the evaluation pro-
cess depends greatly on the semantic representation. We
have chosen a frame concept/value representation (CVR).
An example of a CVR is given in the last row of Table 1.
The values are either numeric units, proper names or se-
mantic classes merging lexical units which are synonyms
for the task. The order of the concept/value pairs in the
semantic representation follows their order in the user’s ut-
terance. A modal information (affirmative or negative) is
assigned to each concept/value pair. The example given in
Table 1 illustrates the use of the negative mode. The se-
quence “c’est pas Croisic” (it’s not Croisic) is represented
in the CVR with the place concept assigned with a neg-
ative mode (-/place: Croisic). The development of the
CVR allows the definition of a concept dictionary, which
specifies for each concept the set of possible values it can
have. There are a total 64 concepts for the ARISE domain
(128 with modality). A scoring tool has been developed
to compare two semantic representations in terms of dele-
tions, insertions, and substitutions [8]. The scoring is done
on the whole triplet including mode, concept name and con-
cept value.

For the stochastic understanding approach, the set of ini-
tial concepts is extended by 40 additional modal marker con-
cepts (like -/m:mode for word “pas” in Table 1) and a
null concept is associated to words not carrying any se-
mantic information in the utterance (e.g. “et” in Table 1).
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Figure 1: Block diagram of the speech understanding system

There are a total of 170 concepts used for the stochastic ap-
proach.

4. STOCHASTIC UNDERSTANDING
The aim of stochastic understanding is to find the se-

quence of semantic units (concepts) C = c1c2 : : : cN that
will represent the meaning of the sentence, assuming that
there is a sequential correspondence between the concept
and word sequences [1].

Given W = w1w2 : : :wN the sequence of words in
the sentence, the understanding process consists of finding
the sequence of concepts which maximizes the a posteriori
probability:

Ĉ = argmax
C

Pr(CjW ) (1)

According to the Bayes formula, equation (1) can be rewrit-
ten as

Ĉ = argmax
C

Pr(W jC) Pr(C) (2)

The term Pr(W jC) is estimated by means of n-gram proba-
bilities of words given the concept associated to word i:

Pr(W jC) = Pr(w1)

NY

i=2

Pr(wijwi�1; : : : ; wi�n+1; ci)

and the term Pr(C) is estimated in terms of m-gram proba-
bilities of concepts:

Pr(C) = Pr(c1)

NY

i=2

Pr(cijci�1; : : : ; ci�m)

In the following experiments, the understanding model is
limited to first order models i.e. n = 1 giving probabilities of
words conditioned on a concept and m = 1 giving concept
bigrams.

A block diagram of the stochastic speech understanding
procedure is shown in Figure 1. An example of the represen-
tation used at different steps in the decoding process is given
in Table 1. The speech recognizer transforms the acoustic



signal into the most probable sequence of words (second row
in Table 1). No prior transduction, such as lexical parsing, is
performed. An exception concerns words that are always as-
sociated with the null concept in the training corpus. These
filler words (such as “euh”, “ah’, or “je”) are removed be-
fore the conceptual decoding. The conceptual decoding is
then carried out to segment the sentence into a sequence of
concepts (third row in Table1).

The role of the concept value normalization module is to
remove the null and marker concepts (e.g. -/m:mode)
and to transduce each sequence of words assigned to a given
concept into its normalized form, according to the CVR con-
cept value list. In the example, the normalization mod-
ule modifies the sequence “dans la matinée” assigned to
the concept range-dep to the normalized form “matin”
(fourth row in Table 1). The resulting CVR proposed by the
whole understanding process for the example is given in the
last row of Table 1.

5. CORPUS DESCRIPTION
The training set used in our experiments contains 14,582

sentences. These utterances have been extracted from the
LIMSI ARISE corpus, which has over 10k dialogs of users
interacting with the system. This corpus has been semi-
manually annotated in terms of concepts [6]. The average
number of words per utterance is 5. The total number of
concepts in the training corpus is 44,812, giving an average
number of 3 CVR concepts per utterance.

A development corpus of 400 utterances was used to
check the evaluation procedure: mostly the relevance of the
CVR representation and the scoring tool. The evaluation is
performed on a test set of 496 utterances randomly selected
from the remaining portion of the ARISE corpus. An itera-
tive approach has been used to derive the reference CVR of
the development and test sets [4].

In order not to bias in favor of one or the other of the sys-
tems, both understanding systems (rule-based and stochas-
tic) were run on the manual transcriptions of the utterances.
Then, the CVRs proposed by the stochastic approach were
corrected by hand. The resulting CVRs were used to score
the rule-based system result and hand corrections were made
when appropriate.

Manual transcriptions are available for all utterances. The
version of the ARISE speech recognizer used in our exper-
iments has a recognition vocabulary of about 4k words in-
cluding over 3k station names. The word error rate is 14.3%
on the test corpus (13.4% for the development corpus).

Table 2 summarizes the characteristics of the training, de-
velopment and test sets.

6. EXPERIMENTS
Three sets of experiments are reported. First, the stochas-

tic approach is validated through a comparative evaluation
with the rule-based approach. The development cost of a

Training Dev. Test
#Utt 14582 400 496
#Words 72380 2261 2880
#Concepts (in CVR) 44812 708 923
Word Error Rate - 13.4% 14.3%

Table 2: Corpus description: number of utterances, words and
CVR concepts of the training, development, and test sets. Word
error rates of the recognized utterances are given for the develop-
ment and test sets.

Dev. Test
Approach Manual Auto. Manual Auto.
Rule-based 2.1 13.2 9.2 19.8
Stochastic 7.8 16.6 9.4 19.1

Table 3: Comparative understanding error rates (%) of the
rule-based caseframe grammar and the stochastic model on manual
(Manual) and automatic (Auto.) transcriptions for the development
and test sets.

stochastic model is then addressed through the relation be-
tween training corpus size and model performance, and fi-
nally an attempt to use automatically annotated data is de-
scribed.

Comparison with the rule-based caseframe approach
To assess the efficiency of the stochastic understanding

method, its performance has been compared with the per-
formance of the rule-based caseframe approach. The results
are summarized in Table 3. The performance criterion is the
understanding error rate measured on the reference CVR as
described in Section 3.

The ability of the rule-based approach to fit a particular
data set is shown on the development set where its UER
is 2.1%, to be compared with 7.8% for the stochastic ap-
proach when the manual transcripts are used as input to the
understanding component. The gap in performance between
the approaches is significantly reduced when automatic tran-
scriptions are used. The loss in performance due to recogni-
tion errors is 11% with the rule-based approach, compared
to 9% for the stochastic one. It can also be observed that,
unlike the rule-based approach, the stochastic approach ob-
tains relatively close results on the development and test sets.
Furthermore, the results on the test set show that both meth-
ods achieve comparable performance when confronted with
unknown data: about 9% UER on the manual transcriptions
and 19% UER on the automatic transcriptions.

Influence of the training corpus size
Manual annotation of a training corpus is a weak aspect

of the stochastic understanding approach. The conceptual
annotation of a 15,000 sentence corpus is a tedious and ex-
pensive process. As a first step in reducing the development
cost, a series of experiments has been carried out to measure
the impact of the training corpus size on the model perfor-
mance.
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Figure 2: Variation of the understanding error rate on the automatic
transcriptions of the test set as a function of the training set size
(number of utterances). Two stochastic models have been tested:
one using a lexical class for station names (solid line) and one with-
out the lexical class (dotted line).

Figure 2 plots the variation of the UER as a function of the
training set size (number of utterances). These results have
been obtained using automatic transcriptions of the test set.
Two stochastic models have been tested: one using a lexical
class for the station names (solid line in Fig.2) and another
without the lexical class (dotted line).

It can be seen in Figure 2 that the UER reaches an asymp-
tote relatively quickly. In the case where a lexical class
is used for the station names, the UER variations become
small in the vicinity of 2,000 sentences. Without this lexi-
cal class, the same level of performance requires about twice
the amount of data (4,000 utterances). The influence of the
class on the model becomes negligible after about 11,000
utterances.

From the development point of view, a few thousand man-
ually annotated utterances appear to be enough for the model
to reach good performance (11.2% with 2,000 queries to be
compared to 9.4% with the whole training set). On the other
hand, it also shows that we have some leeway to increase
the model complexity for it could make a better use of more
data.

Training with automatically annotated data
A system-in-loop scheme has been successfully applied

in the context of speech recognition [9] (for both acoustic
and linguistic model adaptation). Here the same basic idea
is investigated for the development of the stochastic under-
standing model. The approach consists of bootstrapping a
model with a small amount of manually annotated data and
using this model to automatically annotate newly collected
data.

In order to simplify the procedure in these preliminary ex-
periments, an initial model was built using 2,000 of the train-
ing utterances. This model was used to decode the remaining
12,482 utterances in the training corpus. Both subsets were
then merged and a new understanding model built. The un-

derstanding error rate obtained with this new model showed
no significant improvement over the initial model. This first
result seems to show that supervision is still necessary dur-
ing the development phase of the stochastic model.

7. CONCLUSIONS
Experiments with a stochastic speech understanding mod-

ule for a train travel information task have been carried out
and a comparative evaluation of this model with a rule-
based caseframe approach has shown that comparable per-
formances are obtained with both methods when confronted
with unknown data. Since (semi)-manual annotation is an
important cost in developing a stochastic model, we inves-
tigated the performance of the model as a function of the
amount of annotated training data. These experiments in-
dicate that the annotated training set can be reduced to a
few thousand utterances without an important loss in perfor-
mance. It leads us to question whether our simple model
could take advantage of the additional data or whether a
more complex model will need to be used.

A first attempt at using automatically annotated data did
not improve the understanding performance, which seems to
imply that we cannot yet avoid supervision during the devel-
opment of the stochastic model. Future work will assess if,
at least, the level of supervision can be reduced.
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[6] W. Minker, “Compréhension Automatique de la Parole Spon-
tanée”, PhD Thesis, Université Paris XI, 1998.

[7] L. Lamel et al, “The LIMSI ARISE System”, Speech Com-
munication, vol31, pp. 339-353, 2000.

[8] H. Bonneau-Maynard, L. Devillers “A Framework for evalu-
ating contextual understanding,” Proc. ICSLP’2000, Beijing.

[9] F. Lefevre, J.-L. Gauvain, L. Lamel “Genericity and Adapt-
ability Issues for Task-Independent Speech Recognition,”
ISCA ITRW on Adaptation Methods for Speech Recognition,
Nice, 2001.


