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ABSTRACT

For performing the decoding search in Large Vocabu-
lary Continuous Speech Recognition (LVCSR) with Hid-
den Markov Models (HMMs) and statistical language mod-
els, the most straight forward and popular approach is
the time-synchronous beam search procedure. A draw-
back of this approach is that the time-asynchrony of the
language model weight application during search leads to
performance degradations. This is particularly so, when
performing the search with a tight pruning beam. This
study presents a method for smoothing the language model
within the recognition network. The optimization goal is
the smearing of transition probabilities from HMM state to
HMM state in favor of a more time-synchronous language
model weight application. In addition, state-based language
model look-ahead is proposed and evaluated. Both lan-
guage model smoothing techniques lead to a remarkable
improvement in accuracy to run-time ratio, while their com-
bined application yields only limited improvements.

1. INTRODUCTION

Recently, with the introduction of the concept of represent-
ing the search space of LVCSR as a weighted �nite state net-
work [1], the time-synchronous Viterbi decoding procedure
with a single pass that incorporates the full statistical mod-
els became feasible even for state-of-the-art systems and
tasks that involve cross-word context HMMs and n-gram
language models [2]. In the weighted �nite state network,
network arcs are labelled with input and output symbols.
Input symbols are HMMs or HMM states that are consumed
along the arc and output symbols are the dictionary words.
Language model likelihoods and HMM transition probabil-
ities are compiled into this network as weights that the arcs
are labelled with. The major concept of the Viterbi beam
search procedure in this type of network is a fully time-
synchronous breadth-�rst search strategy that extends pos-
sible decoding paths one frame after the other, while it ne-
glects (prunes) those transitions whose log-likelihood drops
below a certain beam threshold. In this procedure, the ob-
servation probabilities derived from the acoustic models can
be applied truly time-synchronously with a log-likelihood
share per frame and HMM state. In contrast, the time-
synchronous application of language model weights is pro-
hibitive, as these are de�ned per word and not per frame
and can only be applied once the current word of a decod-
ing path becomes unique, which might in the extreme case
be only at the very end of the word. The asynchrony of the

language model weight application leads to severe perfor-
mance degradation, especially when a rather tight pruning
beam is applied, which is usually the case whenever the
computational cost for performing the decoding search is a
critical issue.

The problem we are trying to tackle is best explained
using an example. Figure 1 shows an excerpt of a recog-
nition network. From the leftmost node, which might it-
self represent the n-gram node of a speci�c context, the
words \DA", \SAKANA" and \DAKARA" have the lan-
guage model likelihoods 0:05, 0:002 and 0:0005 respectively.
The weights that the arcs are labelled with are minus log-
likelihoods and the language model scale is 10:0.

The o�-line precompilation of this network allows arbi-
trary o�-line operations on it. In the network of Figure 1,
language model look-ahead [3, 4] has been performed. This
procedure factorizes the language model weights so that
the minimum minus log-likelihoods are incorporated into
the search as early as possible. It has been observed that
this kind of factorization leads to a dramatic speed up of
the beam search procedure. This is due to two reasons. On
the one hand, language model look-ahead enables an earlier
application of language model information, which leads to
earlier pruning of potentially wrong decoding paths. On
the other hand, it makes the language model incorpora-
tion smoother to some extent, which reduces the danger
of pruning a path only because other paths appear to be
better that simply do not have the current word's lm-score
added to their score yet.
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Fig. 1. Baseline recognition network with language model
look-ahead performed

However, despite this language model factorization, the
language model information is incorporated into the search
not time-synchronously, but only when entering very par-
ticular arcs. Looking at Figure 1, it is obvious that al-
though \SAKANA" might globally be the best choice for
a speci�c part of the utterance, its large weight at the en-
tering s-arc might cause the pruning of those hypothesis



that are about to enter the s-HMM against those enter-
ing the d-HMM, simply because the d-arc does not have
the full \DAKARA" weight. Thus, the beam search decod-
ing might decode \DAKARA", although \SAKANA" is the
candidate that globally would o�er the better score.

The weight smearing approach described in the follow-
ing paragraph aims at reducing the number of this kind of
pruning error by synchronizing the language model weight
adaptation with time. Paragraph 3 then describes how to
perform the language model look-ahead on the state level
making use of state clustering information, which indirectly
also leads to a slightly delayed, but smoother language
model application.

2. LANGUAGE MODEL SMOOTHING

From the previous paragraph, it is obvious that for good
beam search performance, two slightly contradictory goals
have to be followed as far as the language model weight
application is concerned. On the one hand, the (factor-
ized) language model should be made use of at an early
stage, and on the other hand, the application of the lan-
guage model should be synchronized with time, in order to
reduce the number of hypothesesthat get pruned just be-
cause their language model incorporation is far ahead of
those of other paths.

2.1. Weight smoothing within the WFST

In order to account for both issues, our approach to lan-
guage model smearing is to start from the network as dis-
played in Figure 1, in which the full look-ahead has been
performed. In this network then, weights are pushed back-
wards in an iterative smearing procedure.
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Fig. 2. Weight relaxation within the smoothing procedure

The iterative procedure consists of computing for every
network node the average weight of incoming and the av-
erage weight of leaving arcs. In case the average incoming
weight exceeds the average outgoing weight, weight adjust-
ment is performed in a way that half the di�erence is shifted
so that afterwards incoming and outgoing average weights
of this particular node are equal, as displayed in Figure 2.

This local balancing procedure results in unbalanced
weights at neighboring nodes. Therefore, multiple itera-
tions of this procedure are performed. After some itera-
tions, performed o�-line on the precompiled network, this
procedure �nally ends up with the network as displayed in
Figure 3 for the example introduced in the previous sec-
tion. Nodes with leaving arcs that are pointing backwards,
i.e. nodes with leaving arcs that are pointing to nodes closer
to the network's entry node, are omitted from this smearing
procedure.
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Fig. 3. Smoothed recognition network

2.2. Arc internal smoothing

In our beam search decoder, network arcs represent arbi-
trary linear sequences of HMM states. This might only be
a single HMM state or a long linear sequence of concate-
nated HMM-states. Thus, a single arc itself represents a
linear network, in which, additionally to the smearing de-
scribed above, the arcs' weight can be applied smoothly.
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Fig. 4. Minus log-likelihood of 10.36 applied smoothly
within the HMM

For the example network, in which the arcs represent
three state HMMs, the arc internal smoothing is illustrated
in Figure 4. Each state to state transition is given an equal
share of the arc's overall weight. Entry and exit transition
both only account for half of this equal share, as they do
not connect HMM states directly, but build state to state
transitions only in connection with other entry and exit
transitions.

2.3. Remarks on network topology

The approach as outlined so far tried to smooth the lan-
guage model application during beam search by shifting
weights within the �xed given network structure without
changing the topology itself. However, in favor of language
model smoothness the network topology itself could be sub-
ject of optimization. So, as has already been stated in
[5], sacri�cing network determinization for earlier language
model application can have a positive e�ect on recogni-
tion performance. In this respect, the state-based language
model look-ahead as described in the next paragraph can be
regarded as a network topology adjustment that leads to a
delayed, but smoother language model weight application.



3. STATE-BASED LANGUAGE MODEL
LOOK-AHEAD

In state-of-the-art recognition systems, state clustering is
essential for obtaining robust models for unseen states and
states with too little training data. The most popular ap-
proach is tree-based state clustering [6]. The recognition
network as described so far used HMM names as network
arc labels. When applying this kind of network in decoding,
the expansion of the HMM names into sequences of (possi-
bly clustered) states (see Fig. 4) is performed on-line by the
decoder itself. However, performing the HMM to state ex-
pansion o�-line as an operation on the recognition network,
o�ers the opportunity to merge arcs that are labelled with
clustered HMM states and to perform the language model
look-ahead on this state level. Assuming the (admittedly
rather unlikely) clustering of the �rst states of d and s and
also assuming, they share self- and exit-transition probabil-
ity, the expansion of these HMMs into a network in which
arcs represent single states looks as follows:
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Fig. 5. State-based language model look-ahead

For readability, self-transition loops and HMM state
transition probabilities have been omitted in the �gure. It
is obvious that the merging of clustered states leads to a
stronger language model factorization. In the example, the
full "SAKANA" weight can now only be applied once en-
tering the second state of the s-HMM. This language model
delay within the HMM leads to a smoother language model
application and can result in an improved decoding perfor-
mance.

4. EVALUATION

We evaluated the language model smoothing approaches
using an HMM-based precompiled recognition network for
the recognition of lecture speeches. Vocabulary size is 10k,
full cross-word context dependent triphone names and the
trigram language model as supplied within the Spontaneous
Speech Priority Program [7] are compiled into the network.
The performance is measured on four full lecture speech
turns of approximately 100 minutes in total length using un-
supervised adapted acoustic models, that origin from mod-
els set up in the IPA project. They consist of 2,000 tree-
based clustered HMM states of 16 Gaussian mixture compo-
nents each. With its peak performance of only 59.5% word
accuracy (or 40.5% word error), it is a particularly diÆcult

task in terms of eÆcient decoding with only little additional
error. The time-synchronous search is organized following
very much the principles of token passing as introduced in
[8]. The beam pruning is applied in a way that the thresh-
old is set relative to the current best score with a permanent
update during frame propagation (see [2]). Run-times are
measured on a 667 MHz Compaq Alpha machine.

HMM-based + smearing according
lm look-ahead to 2.1 and 2.2

beam search error time search error time
120 0.5% 17.700s 0.1% 22.200s
110 1.4% 12.200s 0.2% 15.500s
100 3.4% 8.300s 0.7% 11.900s
90 7.9% 5.300s 1.9% 7.500s
80 15.0% 3.400s 4.5% 5.100s
70 24.7% 2.100s 18.5% 2.400s

Table 1. Measured run-time and recognition accuracy with
di�erent pruning beam widths

Table 1 shows the recognition performance in terms of
search error and decoding speed observed for di�erent beam
widths. Search error refers to the additional word error en-
dured because of pruning. Thus, it resembles the measured
word error minus the peak performance of 40.5%. The ac-
curacy achieved with any of the beam widths improves dras-
tically with the introduced smearing approach. This vast
improvement in accuracy comes along with only a moderate
increase in recognition time, so that decoding in the weight
smeared network is considerably faster than the decoding
with a wider beam that achieves a similar recognition per-
formance without the smearing.

state-based + smearing according
lm look-ahead to 2.1 and 2.2

beam search error time search error time
120 0.2% 14.400s 0.2% 19.300s
110 0.6% 10.000s 0.3% 14.200s
100 1.4% 7.500s 0.9% 10.500s
90 4.0% 5.900s 1.9% 7.900s
80 8.1% 3.900s 4.0% 5.900s
70 16.4% 2.600s 9.3% 4.500s

Table 2. Evaluation of the state-based language model
look-ahead with and without additional weight smoothing

The left hand side of Table 2 shows run-time and search
error achieved with the state-based look-ahead of Section 3.
Comparing it with the results in Table 1, it is obvious that
the observed search error rate reduction is not as good as is
was with the full smearing, but that decoding times are even
lower now, which might make this the preferable choice.

The right hand side of Table 2 shows the recognition
performance when applying the weight smearing as intro-
duced in Section 2 on the state level network on which the
state-based look-ahead has been performed beforehand. We
observe another search error reduction relative to a �xed
beam width. The run-time to search error ratio, however,
only improves slightly for tight pruning beams. For wider
beam widths, it rather has a slightly negative e�ect. These
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observations are more obvious looking at Figure 6 and 7.

Figure 6 summarizes the measured ratio between prun-
ing beam width and endured search error. Particularly ob-
vious is that the performance of standard beam pruning
vastly improves with the introduced language model smear-
ing approach, and that it is still of good e�ect when it is ap-
plied in addition to state-based language model look-ahead.

However, the performance improvements measured rel-
ative to the beam width as displayed in Figure 6 do not
directly translate into an improved run-time to accuracy
ratio. This is due to the fact that with any type of delay in
the language model application bad paths also tend to get
pruned later which slows down decoding. Figure 7 shows
the run-time to recognition performance ratio. With any of
the proposed weight smoothing approaches, the curve ap-
proaches the baseline of no search error much more directly
than with only the HMM-based language model look-ahead
performed. From a run-time of 1.5 RTF and above, the
search error observed in the baseline network is at least two
times higher than with the smoothing approaches applied.
For very fast decoding (between 0.5 and 1.0 RTF), the pro-
posed smearing approach of Section 2 seems to be the best
choice.

5. CONCLUSION

This study presented two approaches of smoothing the lan-
guage model within the precompiled recognition network of
a standard speech recognition task. Optimization goal of
the one was the relaxation of transition probabilities from
HMM state to HMM state while preserving the network's
overall topology. The other consisted of precompiling the
recognition network down to the HMM state level while
merging clustered HMM states and of performing the lan-
guage model lookahead on the state level. Both approaches
o�er a considerably better tradeo� between decoding speed
and accuracy over conventional beam search in an HMM-
based language model look-ahead network. The experimen-
tal results strongly suggest to perform either the weight
smoothing or the state-based language model lookahead for
robost performance in recognition scenarios that are lim-
ited by some computational demands, like in decoding un-
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der real-time constraints.
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