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ABSTRACT

In [1] a parsing language model based on a probabilistic left-corner
grammar (PLCG) was proposed and encouraging performance on
a speech recognition task using the PLCG-based language model
was reported. In this paper we show how the PLCG-based lan-
guage model can be further optimized by iterative parameter rees-
timation on unannotated training data. The precalculation of for-
ward, inner and outer probabilities of states in the PLCG network
provides an elegant crosscut to the computation of transition fre-
quency expectations, which are needed in each iteration of the
proposed reestimation procedure. The training algorithm enables
model training on very large corpora. In our experiments, test set
perplexity is close to saturation after three iterations, 5 to 16%
lower than initially. We however observed no significant improve-
ment of recognition accuracy after reestimation.

1. INTRODUCTION

In large-vocabulary continuous speech recognition (LVCSR) sys-
tems, the language model is responsible for estimating the prob-
abilities of competing output sentence hypotheses, represented as
sequences of word tokens. LVCSR language models are usually
implemented as a combination of components such as word-based
n-grams, class-based n-grams, trigger models, distance n-grams
and sentence-mixture models. None of these, however, explicitly
take advantage of the fact that sentences have a syntactic structure.
This, and advances in large-scale natural language parsing, explain
the recent interest in parsing language models (PLMs) for LVCSR.

For a given sentence, generative stochastic grammars generate
a number of derivations and return the probability of each deriva-
tion, which is equivalent with an (analysis, sentence)-pair. PLMs
compute the probability of a sentence as the sum over these joint
probabilities. A fair number of recent papers deal with PLMs
based on various grammar formalisms; for an overview, see [2].

For some classes of PLMs, but not for all, automatic proce-
dures have been published that optimize the parameters on the in-
complete data (plain text) as opposed to optimizing on the com-
plete (hand-annotated) training data (e.g. a treebank) [3, 4, 5].
The cited procedures bias the models’ behavior towards favor-
ing the hidden syntactic structure that at the same time can be
predicted reliably and explains the observed data best — regard-
less of the “correctness” of that hidden syntactic structure. All of
them find a maximum-likelihood (ML) solution with the EM algo-
rithm [6][4, 5] or an approximation thereof [3].

This paper deals with ML training of the PLCG-based LM
using the EM algorithm. In [1], we introduced the PLCG-based
model and reported encouraging results on speech recognition.

This work was supported by the K.U.Leuven Research Fund. Corre-
spondence e-mail: donghoon.vanuytsel@esat.kuleuven.ac.be

The models used in these tests however were directly estimated
from a large treebank and not additionally trained. In this paper
we evaluate whether and how much improvement can be realized
with maximum-likelihood training.

The rest of this paper is structured as follows. In the follow-
ing section, we review the workings of our left-corner parsing lan-
guage model. This is necessary to understand the EM training
formulas developed in Sec. 3. Sec. 4 reports on small-scale exper-
iments using models trained on the PennTreebank corpus and on
larger-scale speech recognition experiments with models trained
on a larger corpus. Sec. 5 concludes.

2. PROBABILISTIC LEFT-CORNER PARSING IN A
STATE NETWORK

In this section we review concepts and definitions of the proba-
bilistic left-corner parsing framework introduced in [1].

2.1. Simple left-corner parsing

Our probabilistic left-corner parser was inspired by the probabilis-
tic reformulation in [7] of the deterministic left-corner parser [8].
Left-corner parsers work by a recursive procedure of bottom-up
and top-down processing. From a goal category (the category of
the constituent to be constructed), the first word is shifted, which is
treated as any other complete constituent: if its category matches
the goal category, then it can be attached, which completes the
resolution of the goal category. Otherwise all possible local trees
that have the category of the complete constituent as their leftmost
daughter are projected. The other categories in each rule’s right-
hand side serve as goal categories and are resolved by recursive
application of this procedure.

In [7] a probabilistic formulation of the left-corner parser is
given. The rule probabilities applied herein only depend on the
category of the left corner (the first category of the righthand side)
and its goal corner. The difference with a PCFG lies in the captur-
ing of the dependency between a constituent category and its goal
category and in the way local dependencies are parameterized: for
a constituent A with goal G and children B and C , a PCFG uses a
production probability P(B, C|A), while the left-corner grammar
contains a projection probability P(A, C|B, G).

2.2. Context-sensitive, lexicalized left-corner parsing

We have extended Manning’s framework with lexicalization and
context-sensitivity [1]. A lexicalized grammar characterizes a con-
stituent not only by its syntactical category, but also by a lexical
head (a “headword”); all of the currently best large-scale parsers
are lexicalized in that they assign one of the words occurring in a
constituent as the headword of that constituent. We will follow this
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Fig. 1. Context of a state q, defined by Eq. 1. The dashed lines
connect constituents with their goal categories.

practice. With context-sensitivity we mean that, besides depen-
dency on the goal category, also dependency on a c-commanding
constituent plays a role in the construction of a new constituent.

Since the resulting parser has to deal with a lot more depen-
dencies, an efficient synchronous parsing algorithm that operates
in a state space was proposed. The state space is represented as a
network of states, and the parsing of a sentence is reformulated as
optimal path search. The network is a directed acyclic graph con-
taining N nodes, where each node is associated with a parser state
qi (i = 1 . . . N) and each edge corresponds with an elementary
parser move ti j from state qi to state q j . There is only one edge
between two states.
States — A state is a kind of enhanced dotted rule. We use the
following notation:

q = (Z/z → i X/x � j β; G, L1/l1, L2/l2) (1)

with the following meaning (cfr. Fig. 1): q corresponds with a set
of constituents, each of which has the following properties: its cat-
egory/head label is Z/z and its immediate left daughter constituent
has category/head label X/x; it starts in position i and is completed
till position j (the “current” position of q); it may have other re-
solved daughters, represented by a wildcard � since their identity
is not important for the operation of the parser; there may be other
unresolved daughters, represented by β; the goal category is G;
the first-order left corner (LC) context, L1/l1, is the category/head
of the left corner of the constituent’s goal constituent; the second-
order LC context, L2/l2 is the category/head pair of the immediate
left corner of the goal constituent of Z’s goal constituent. In lin-
guistic terms, L1 c-commands Z and L2 c-commands Z’s goal
constituent.

If β is void, q is called a complete state, else it is called incom-
plete. If Z = W, denoting that Z corresponds with a word, then q
is called a word state. In that case Z has no daughters.
Transitions — There are three kinds of state transitions: shift,
project and attach. In the constrained network, a shift transition is
the only possible from an incomplete state q and it leads to a word
state q′:

q = (Z/z → i X/x � j Yβ; G, L1/l1, L2/l2) (2)

q′ = (W/w j → j � j+1; Y, X/x, L1/l1) (3)

In other words, in q the parser seeks to resolve a constituent Y
starting in position j , so Y becomes the goal category of q′. Also
note that Z’s immediate left daughter X/x becomes the first-order
LC context in q′, while the first-order LC context of q becomes
the second-order LC context of q′.

A project transition starts from a complete state q and leads
to q′, which is complete if a unary constituent is projected, but
incomplete otherwise:

q = (Z/z → i X/x � j ; G, L1/l1, L2/l2) (4)

q′ = (Z ′/z′ → i Z/z � j β
′; G, L1/l1, L2/l2) (5)

Table 1. PLCG submodel parameterizations used in this paper.
The “from” column contains a reference to the corresponding
equation. In the third column, the context elements are ordered
by most signicant first. A is the event in which attachment takes
place.

transition from parameterization
shift (2) Ps (w j |Y, x, l1)
tag (4) Pt (Z ′|z, G, L1)
project (4) Pp(Z ′, β′|G, Z, X, z)
attach (6) Pa(A|Y, D, y)

Note that the constituents corresponding with q become the left
daughter of the constituents corresponding with q′ and that the
start position, current position and the context are inherited. If
Z is in head position in the local tree Z ′ → Zβ ′, z′ is set to z;
otherwise it is set to “void”.

If the category of a complete state q equals its goal category,
then q corresponds with constituents that will complete an incom-
plete state q′′ earlier in the path. The parser decides whether to
attach (which completes q′′ further) or to project further. The at-
tach transition occurs between q and q′ and is made possible by
q′′:

q = (Y/y → j D/d � k; Y, X/x, L1/l1) (6)

q′ = (Z/z → i X/x � kβ; G, L1/l1, L2/l2) (7)

q′′ = (Z/z′′ → i X/x � j Yβ; G, L1/l1, L2/l2) (8)

In plain words, Y is popped from the stack of unresolved daugh-
ter categories, and the current position is incremented from j to k.
The lexical head z of q′ remains void if z′′ is void and Y is not in
head position in q′′. If z′′ is not void or Y is not the head daughter
of Z , then z = z′′; otherwise z is void. For convenience, we intro-
duce the notation A(t (q, q′)) = q′′ for the “point of attachment”
associated with the attach transition from q to q′.

The probability of a transition is conditioned by and only by
the state it starts from. In principle, any state feature may influence
the transition probability; however, in practice, there is a trade-off
between model detail and the limited reliability with which model
parameters can be estimated due to data fragmentation, given a
fixed amount of training data. Furthermore, statistical smoothing is
necessary because straight maximum likelihood estimation would
introduce too much bias. For the shift transition probability, it
is necessary for the validity of the inner probability computations
(see below) to condition only on features that appear in the arrival
state too; i.e. X/x, j, Y , and L1/l1 in Eq. 2.

In our experiments and in the rest of this paper we assume pa-
rameterizations as given in Table 1. The semantics of the third col-
umn follows the equations referenced in the second column. Note
that project transitions from a state that reached its goal category
are computed as Pt (·|·)(1 − Pa(A|·)). Also note that we mention
a “tag” transition; this is in fact a project transition from a word
state. It turned out to be favorable to provide a different param-
eterization in this case. The order in which the context elements
appear is important because less significant context elements are
stepwise left out from the lower-order smoothing models. The pa-
rameterizations were found by some hand tweaking on a develop-
ment test set held out from the training data, and they were kept
fixed for the rest of the experiments afterwards. In a certain sense
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Fig. 2. Non-locality in the constrained network: A(t) must occur
in the path taking transition t (connected with A(t) with dashed
lines). The sequence B→C→ . . . →E is an invalid path, B→C→
. . . →F and B→C→ . . . →G→E are valid paths.

they are arbitrary and possibly corpus dependent; perhaps the ap-
plication of automatic discovery techniques could be interesting in
this case.
Paths — A path qk = (qk1 , qk2 , . . . , qkm ) is a sequence of con-
nected states and is characterized by its state index sequence k.
The probability of qk is given by P(qk) = ∏m−1

j=1 P(tk j k j+1 |qk j )

as transitions are assumed mutually independent (actually the de-
pendence of a transition on the preceding transitions is reduced to
the source state, which functions as its sole conditioning context).
If qk starts with the initial state (k1 = I ) and ends in the final state
km = F , then it is said to be complete and uniquely corresponds
with the derivation (S, T ), where T is a parse tree and S is the
input sentence. The output of the PLCG-based LM, P(S), is ob-
tained as the S-marginal of P(S, T ). Although enumerating all T
is, in general, hard or impossible, it is possible to factor the sum
over all T using state probabilities as is shown below. Given a sen-
tence S, we will only visit the subset of the network that contains
the paths that generate S and no other paths. This subset is called
the (S-)constrained network.

An essential property of the network is that there are no two
states with identical features. This allows a compact representation
of the constrained network and the application of dynamic pro-
gramming such that reduplicating parsing effort is avoided wher-
ever possible. In this sense, the constrained network is a com-
pressed version of all the paths that generate S. Note, however,
that in general not all sequences of connected states in the net-
work constitute a valid path. The reason is that an attach tran-
sition to a state that completes another state that did not appear
earlier in the path, is disallowed. For instance in Fig. 2, the se-
quence A→C→ . . . →F does not constitute a valid path. This
non-locality slightly complicates the computation of state proba-
bilities: forward-backward training as in [5] does not fit our pur-
pose — in the next section we show how it can be replaced with a
variant of inside-outside training.

3. TRAINING THE PLCG-BASED LM

3.1. State probabilities and expected transition frequency

The definition of state probabilities allows an efficient computa-
tion of word prefix probabilities and expected transition frequen-
cies. Word prefix probabilities enable the language model to emit
probabilities of the format P(w j |w0 . . . w j−1) (in addition to the
probability of the whole sentence), which is a most useful prop-
erty in current speech recognition system architectures. Expected
transition frequencies are needed in the E-step of the EM training
procedure developed below.

With each state q, defined as (1), we associate three probabil-
ities. The forward probability µ(q) is the sum of probabilities of
the paths from the initial state till q. The inner probability ν(q)

is the sum of probabilities of the paths that start with a shift of wi
and arrive in q. The outer probability ξ(q) is a sum, in which each
term is the partial probability of a path from qI till qF containing
q, but with the probability of the path fragment covered by ν(q)

left out: the fragment that starts with a shift of wi and arrives in q.
A direct consequence is that P(S) = µ(qF ) = ν(qF ) = ξ(qI ).

The computation of µ(q) and ν(q) starts from the initializa-
tion µ(qI ) = ν(qI ) = ξ(qF ) = 1 and proceeds in a forward
direction, synchronously with the parsing algorithm [1]. After the
forward step, ξ(qF ) is set to 1 and the other ξ(q) are computed in
reverse topological order. The following recursive relations hold:

µ(qi ) =
∑
tki

{
ν(qk )P(tki |qk )µ(A(tki )) if tki is attach
µ(qk)P(tki |qk ) otherwise

(9)

ν(qi ) =




P(tki |qk ) if qi is word state∑
tki

{
ν(qk )P(tki |qk )ν(A(tki )) if tki is attach
ν(qk )P(tki |qk ) otherwise

(10)

ξ(qi ) =




∑
tmn :A(tmn)=qi

ξ(qn)ν(qm )P(tmn |qk ) if qi is incomplete

∑
tik

{
ξ(qk)P(tik |qi )ν(qi ) if tik is attach
ξ(qk)P(tik |qi ) otherwise

(11)

Due to space constraints, we do not give a formal proof of these
equations here; though they can be understood by reasoning on the
network, keeping its specific nested structure in mind (Fig. 2).

Given an input sentence S, the expected frequency of a transi-
tion t is the sum of visit probabilities of the transitions ti j = t in
the S-constrained network: EFS(t) = ∑

ti j =t P(ti j |S). P(ti j |S)

can be expressed as a sum of the probabilities of the complete paths
containing ti j given S and efficiently computed using state proba-
bilities:

P(ti j )|S) =
{

ν(q j )ξ(q j )/ν(qF ) if ti j is shift
ν(qi )P(ti j |qi )ξ(q j )/ν(qF ) otherwise

(12)

3.2. EM updates

Let � be the unannotated training corpus and �∗ the same data
plus the hidden structure generated with a model θ , and suppose
we want to update an old model θo. The E-step of the EM algo-
rithm involves the construction of an auxiliary function Q(θ, θo),
the θo-expectation of the logarithm of the θ-likelihood of �∗ given
�. In our case it can be written as

Q(θ, θo) =
∑
S∈�

∑
T

Pθo (T |S) log Pθ (S, T )

=
∑

t
EF�(t |θo) log pθ (t) (13)

where EF�(t |θo) =
∑

S∈� EFS(t |θo) and t ranges over all possi-
ble (transition|context) events. If we choose

θ̂ = arg max
θ

Q(θ, θo) (14)



Table 2. Training times, word error rates and train and test set per-
plexities before and after reestimation. Training time is expressed
in hours of user time of a 650 Mhz PentiumIII processor.

PTB models BLLIP models
train test train train test WER
PPL PPL time(h) PPL PPL (%)

3gram 126.0 82.0 7.98
0 it. 83.6 126.0 430 82.5 95.4 7.60
1 it. 66.9 120.4 400 64.2 86.6 7.62
2 it. 64.5 120.2 355 60.2 82.5 7.50
3 it. 119.4 80.4 7.49

then [6] proves that P
θ̂
(�) ≥ Pθo (�), such that the EM algorithm

is guaranteed to converge. The conditional probabilities pθ (t) are
subject to

∑
t :H(t)=h pθ (t) = 1 for each transition context h,

where H(t) denotes the conditioning context of t . Under these
constraints the maximum is found in

p
θ̂
(t) = EF�(t |θo)∑

tk :H(tk)=H(t)
EF�(tk |θo)

(15)

4. EXPERIMENTS

We conducted experiments on the PennTreebank (PTB) [9] and
the machine-parsed WSJ corpus available from BLLIP through
the LDC [10] (BLLIP). BLLIP is about 35 times larger than the
PTB, but contains errors. For the PTB experiment set, we initial-
ized models on sections 0–20 and reestimated them on the same
data. The models for the BLLIP experiment set were initialized
and reestimated on the BLLIP corpus plus sections 0–20 of the
PTB corpus; care was taken that the speech recognition test set was
excluded from the training data. All the submodels and the word-
trigram baseline were pruned by omitting all maximum-order ev-
ents that had appeared less than twice in the training data, in order
to relax memory requirements and counteract overtraining. The
submodels were smoothed using Katz back-off [11], which in our
experience is very comparable to deleted-interpolation submodels
when cooperating in a PLCG-based language model. We preferred
the first smoothing method over the latter because it allows a faster
evaluation.

Test set perplexities for BLLIP and PTB models were mea-
sured on sections 23–24 of the PTB corpus before reestimation
and after each iteration. In Table 2, it is shown that test set per-
plexities are reduced by 5% and 16%, resp. for PTB and BLLIP.
Train set perplexity drops by 23% (PTB) and by 27% (BLLIP) af-
ter two iterations. It is also worth mentioning that the reestimated
models evaluate and retrain faster with fixed pruning settings, as
can be read off the “time(h)” column.

In order to evaluate the impact of reestimating the PLCG-
based LM on speech recognition performance, we used the BLLIP
models for rescoring 100-best lists that were obtained from the first
pass of a mainstream HMM-based Viterbi decoder equipped with
a word trigram LM. We tested on the evaluation and development
test set (20k open vocabulary with verbalized punctuation) of the
DARPA WSJ Nov.’92 LVCSR test suite. The 100-best lists were
first preprocessed to match the tokenization of the BLLIP models:
e.g. “don’t” was replaced with “do n’t” and numbers were replaced
with “N”. The results listed in Table 2 are obtained by rescoring

the n-best lists with a word-trigram model (as a baseline) and with
word-trigram interpolated initial and reestimated versions of the
BLLIP models. The WER does not convincingly follow the down-
ward trend of the test set perplexity.

5. CONCLUSION

We proposed an efficient iterative training algorithm for the maxi-
mum-likelihood optimization of the PLCG-based language model.
It can be used to reestimate the language model on the initializa-
tion corpus and to train it on other very large unannotated cor-
pora. We evaluated reestimation of small models (based on the
Penn Treebank) and larger models (based on the BLLIP machine-
parsed WSJ corpus). Test set perplexities of the reestimated mod-
els are reduced by approximately 5% to 16% compared with those
obtained with the initial model; reestimated models also tend to
evaluate faster with equal pruning parameter settings. The speech
recognition accuracy measured with the reestimated models how-
ever remains at a status quo. Evaluation of training on additional
unannoted corpora is a topic for future research.
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