
TRANSDUCER COMPOSITION FOR “ON-THE-FLY” LEXICON AND LANGUAGE
MODEL INTEGRATION

Diamantino Caseiro, Isabel Trancoso

L
2
F Spoken Language Systems Lab.

INESC-ID/IST
Rua Alves Redol 9, 1000-029 Lisbon, Portugal
fdcaseiro, Isabel.Trancosog@l2f.inesc-id.pt

ABSTRACT

In this work we present the use of a specialized composition
algorithm that allows the generation of a determinized search net-
work for ASR in a single step. The algorithm is exact in the sense
that the result is determinized when the lexicon and the language
model are represented as determinized transducers. The compo-
sition and determinization are performed simultaneously, which
is of great importance for “on-the-fly” operation. The algorithm
pushes the language model weights towards the initial state of the
network. Our results show that it is advantageous to use the max-
imum amount of information as early as possible in the decoding
procedure.

1. INTRODUCTION

Our long term motivation is to work towards the development
of specialized composition algorithms that will allow the use of
knowledge sources of higher level than the language model. When
our task moves from simple transcription to understanding, other
knowledge sources are available that are not usually taken into ac-
count early in the decoding process. We believe that in order to
fully exploit that knowledge some “on-the-fly” processing will be
required, as they are very often dynamic and complex. The usual
approach consists on interleaving “on-the-fly” composition, with
“on-the-fly” determinization [1]. We think that a specialized “on-
the-fly” composition that generates a determinized result can be
more efficient.

Our first step towards this long term goal was described in
[2], where we formally presented an algorithm for the composition
of the lexicon with the language model. There we showed that
our method was able to directly generate similar sized networks as
those obtained with explicit determinization [3].

The current paper builds on that work and shows how the al-
gorithm can be extended to compress “on-the-fly” the search net-
work. Here, we also investigate the applicability of the developed
algorithm to real recognition tasks, comparing the impact of vari-
ous refinements on the performance of the decoder.

In the next section we will present our composition algorithm.
Then, in section 3, we will show how we can reduce the size of
the composition network by sharing some equivalent states, and

The present work is part of Diamantino Caseiro’s PhD thesis, initially
sponsored by a FCT scholarship (PRAXIS XXI/BD/15836/98). This works
was also partially funded by the POSI program of the “Quadro Comunitario
de Apoio III”.

also how this network can be factorized to reduce the memory re-
quirements of the decoder. In section 4, we present recognition
experiments that show the impact on the performance of the de-
coder of various refinements of the algorithm. Finally, in section
5, we summarize the main conclusions and present out plans for
future work.

0

1e:eps

2

o:eps

3l:eps

4l:eps

5

n:eps

6

a:ELA

e:ELE

a:OLA

e:OLE

u:ONU

Fig. 1. Lexicon.

0

1OLA:OLA/1

ELA:ELA/2

2

OLE:OLE/3

Fig. 2. Language model.

(0,0)

(1,0)e : eps

(2,0)

o : eps

(3,0)l : eps

(4,0)l : eps

(6,1)
a : ELA

a : OLA

(6,2)
e : OLE

Fig. 3. Composition of the lexicon with the language model.

2. LEXICON AND LANGUAGE MODEL COMPOSITION

Our algorithm requires the use of a lexicon and a language model
represented as two weighted finite state transducers (WFST), L
and G respectively. The lexica and language models commonly
used in ASR are easily representable as WFSTs, as shown in [2],

0

1e:eps

2
o:eps

3l:eps

4l:eps

5

n:eps

6
a:ELA/2

a:OLA/1

7

e:OLE/3

Fig. 4. Dead-ends generated by the composition algorithm.

although some approximations are used in the case of n-gram lan-
guage models.

Figure 3 shows the composition of the toy lexicon and lan-
guage model WFSTs of figures 1 and 2. In the WFST composition
algorithm [4], each state of the composition WFST represents a
pair with a state from each of the argument WFSTs. For example,
state (0; 1) in figure 3 consists of the state 0 from the lexicon and of
state 1 from the language model. Each edge leaving a state in the
composition is obtained from one pair of compatible edges, one
leaving the respective lexicon state and the other one leaving the
language model state. The edges are deemed compatible if the out-
put of the lexicon edge is equal to the input label of the language
model edge. The resulting edge is assigned the input label of the
lexicon edge and the output label of the language model edge. The
epsilon edges can be easily dealt with by adding extra “self-loop”
edges to each state labelled with auxiliary epsilon symbols [4].

It is well known that when both transducers are deterministic
on the input side their composition will also be deterministic, as
proved by Mohri in theorem 1 of [1]. But the composition algo-
rithm, as described, is very unpractical for the case of the com-
position of a lexicon WFST with a language model WFST. The
problem is that it will mostly generate “dead-end-paths”, that is,
paths that end in a non-final state with no successors. Figure 4
illustrates the problem by showing all the paths generated by the
composition algorithm, including the dead-end of state 5.

In our algorithm [2], we avoid the generation of “dead-end-
paths” by pre-calculating the sets of output words reachable from
each edge of the lexicon WFST; each set is then associated with
the respective edge. Using that information, our algorithm will not
match epsilon-output edges from the lexicon with edges from the
language model when the input of the language model edge is not
in the set associated with the edge of the lexicon.

The computation of the set of edges leaving a state s =
(sl; sg) in the composition can be easily performed “on-the-fly”
as no look-ahead is required. In fact, the algorithm only needs to
know the identity of the lexicon and language models states (sl and
sg respectively), in order to access the set of lexicon or language
model edges that leave those states. With that information we can
compute more than a simple composition and it is straightforward
to perform language model label and weight pushing.

2.1. Pushing

As the first step in the direction of an approximation to “on-the-
fly” minimization, we implemented an approximation of pushing.
It is useful to push the output labels and the output weights as
much towards the initial state as possible. Pushing the output la-
bels will allow further sharing of suffixes by our network compres-
sion algorithm, resulting in smaller composition WFSTs. Pushing
the weights allows an earlier use of the language model during
search, in what is sometimes called “language model look-ahead”.
Our “on-the-fly” implementation of weight pushing only spreads

the language model weights. Our purpose is to spread the weights
of the language model throughout the path from the initial state of
the word until its identity is known.

The pushing of output labels is done outputting the label as
soon as only one of the edges leaving the language model state
(sg) matches with a given lexicon edge. The pushing of weights
towards the initial state is done by first selecting the weight of the
best matching language model edge, and then outputting the dif-
ference between that weight and the partial sum of the previously
produced weights in that path. Each state of the composition keeps
its own partial sum.

0

5

e:ELA

o:OLA

6

e:ELE

o:OLE

7

o:eps

2

l:eps

3l:eps

4n:eps

1

a:eps

e:eps
u:ONU

Fig. 5. Suffix sharing lexicon.

3. “ON-THE-FLY” NETWORK COMPRESSION

Although the composition of deterministic transducers will yield
a deterministic transducer, the composition of minimal transduc-
ers will not, in general, generate a minimal one. In order to ob-
tain a true minimal transducer, the result will have to be explicitly
minimized using a minimization algorithm such as Mohri’s min-
imization algorithm for WFSTs. It consists of pushing the output
labels and the weights as much as possible towards the initial state,
and then performing a classical minimization of the underlying au-
tomaton1 .

Observing the results of the determinization algorithm, we no-
tice that it essentially shares the prefixes of the pronunciation of
words that leave the same language model state, by replicating
the structure of the lexicon WFST. We want our compression al-
gorithm to also allow the sharing of suffixes of words that arrive
at the same language model state, and we want to compute this
“on-the-fly”. Our approach consists of selectively replacing the
lexicon with a “suffix sharing” equivalent lexicon R, like the one
illustrated in figure 5. It consists of the reverse of a deterministic
WFST (so that is shares all possible suffixes). We call this WFST
“suffix lexicon”, and we use it to guess the structure of the compo-
sition WFST only for states (sl; sg) in a path after the output of the
label and before reaching the end of the pronunciation. When the
label pushing version of the composition outputs a label, the desti-
nation of that edge will be a state (dl; dg), ***here we replace the
destination state dl with a state dr of the suffix lexicon that starts
an equivalent path to a final state. In general, if multiple pronun-
ciations are used, then there can be more than one equivalent dr

state, and a small amount of non-determinancy will be created by
outputting multiple edges.

To find the dr states compatible with dl, we start by computing
the set of pairs of states (sl; sr) such that there exists a path from
il (the initial state of L) to sl equal to a path from ir to sr, and

1The underlying automaton is obtained by treating each tuple (input,
output, weight) as a single label.

also a path from sl to a final state of L equal to a path from sr to a
final state of R. Those pairs are just the ones that label each state
of the composition of the inverse2 of the lexicon with the reverse
lexicon (Li Æ R). In a process similar to the one used to resolve
the epsilon edges in the composition, the states of R are assigned
the set of words that have the state in its pronunciation path. All
this information is precomputed. In runtime, the table is consulted
to find candidate states dr , that are used if the label just traversed
is in their sets of words.

In our tests, while producing bigger networks than the true
minimization algorithm, this algorithm still managed to reduce the
number of states to about 40% and the number of edges to 60%.
There was no visible impact on the recognition time.

3.1. Network Factorization

The WFST that results from the composition of the acoustic model
WFST H 3 with the composition of the lexicon with the language
model, has very long sequences of states forming “linear paths”,
where each state has only one sucessor and eventually a self-loop
edge. In [3], Mohri and Riley factorized the network by replacing
such paths with an identifying edge and thus were able to achieve
a reduction of its size of about 4 times. Those special edges were
conceptually expanded in run time by the decoder. That particu-
lar factorization method cannot be applied “on-the-fly” due to its
global nature. But we can still associate the composition cascade
as (H ÆL) ÆG instead of (H Æ (L ÆG)) and factorize (H ÆL) be-
fore composing it with the language model. Alternatively, we can
just factorize H , in which case each factorized path will resemble
an acoustic unit HMM in a tradicional decoder. In our experiments
we opted for this last approach and still managed a reduction of
about 2.5 times in the number of states.

3.2. Decoder Modification

In order to evaluate the quality of the combined lexicon and lan-
guage model networks, we had to change our initial decoder [5].
The previous version was based in the propagation of tokens,
where each token represents sets of hypotheses that share the same
state in the search network. By working with sets of hypotheses
it was possible to decouple the language model from the search
network in a time-synchronous mode of operation.

As the decoder was implemented using the principles of data
abstraction, it was easy to reuse most of the search algorithms,
and adapt the decoder to the efficient use of one single integrated
search network, by using a more suitable representation of the to-
kens that store only one hypothesis. The decoder was also adapted
to directly work with macro arcs that directly correspond to the
factorized paths described in section 3.1, so that it can simultane-
ously work with macro arcs and with regular edges.

4. RECOGNITION EXPERIMENTS

4.1. Experimental Setup

In this section we describe the recognition experiments performed
to evaluate the networks produced by our composition algorithm.

2The inverse of a WFST is obtained by swapping its input and output
labels, it has that name because it computes the inverse relation.

3This WFSTrepresents the structure of the subword HMMs, and maps
distributions to subword units.

All the experiments were based on the BDPÚBLICO corpus[6]
framework. It consists of European Portuguese read speech col-
lected in a sound-proof room with a high quality microphone, and
of texts from the online edition of the PÚBLICO newspaper. It
is equivalent in size and purpose to WSJ0. The experiments were
performed using standard 600MHz pentium III PCs with 512MB
or 1GB of RAM, running Linux.

We used an European Portuguese lexicon with 27k words. The
lexicon was converted to a linear lexicon WFST and disambiguat-
ing labels were added at the end of the pronunciations. This WFST
originally had 281,815 states and 313,962 edges. It was then de-
terminized and minimized for use with our composition algorithm
resulting in an equivalent WFST with 29,620 states and 59,366
edges.

We used various trigram backoff language models, trained
from 46 million words from the online edition of the PÚBLICO
newspaper, corresponding to the years from 1995 to 1998. The
generation of language model of various sizes was done by apply-
ing different cutoffs (we applied the same cutoff to bigrams and
trigrams). The language models were approximated by WFSTs by
representing each context by a different state and each n-gram in
the model by an edge between contexts. The backoffs were rep-
resented by epsilon edges from specific contexts to more general
ones.

The best acoustic models available in our research group are
based on the combination of the output of various neural networks
[7]. In our recognition experiments, we extracted 3 different sets
of features from the speech signal: 12 plp coefficients + log en-
ergy + deltas; 12 log-rasta coefficients + log energy + deltas; 28
modulation spectrogram features.

We used 3 separate multilayer perceptrons (MLP), one for
each set of features. The input of each MLP was a window of
7 vectors centered on the vector being analyzed. The MLPs had
a 3-layer architecture with 500 units in the hidden layer, and the
output consisted of 39 softmax units corresponding to 38 context
independent phones plus silence. The output of the 3 MLPs was
combined using the average of the logarithm of the probability es-
timated for each phone.

The acoustic model topology consisted of a sequence of states
with no self-loop to enforce the minimal duration of the model, and
one final state with a self-loop. The acoustic models were encoded
in a single acoustic model WFST.

4.2. Results

In figure 6 we compare the search WER, shown as a function of
recognition time, using integrated composition networks obtained
with three versions of our algorithm: with pushed labels; with
pushed labels & weights; and with pushed labels & weights but
using a minimized language model. It also shows the performance
of using an integrated network that was offline minimized 4. All
versions used the same language model model (with cutoffs of 10
trigrams and bigrams). We can very clearly see the advantages of
pushing the weights. Is is also obvious that full minimization post-
processing of the network outperforms the other approaches. The
language model WFST used was determinized but not minimized
in the 2 first versions. We see, in the third version, that the use of
a minimized language model drastically reduces the difference to
the full minimized network. We think that there is an acceptable

4The minimization standardizes the network, thus all versions of the
algorithm show the same performance after the offline minimization.

loss in not performing the offline minimization. This minimization
cannot be applied “on-the-fly” during recognition.

15

20

25

30

35

0 0.5 1 1.5 2 2.5

W
E

R

xRT

Pushed Labels
Pushed Labels & Weights

Minimized LM & Pushed Weights
Offline Minimized

Fig. 6. Performance of various versions of the algorithm.

15

20

25

30

35

0 0.5 1 1.5 2 2.5

W
E

R

xRT

On-the-fly
Minimized LM & Pushed Weights

Fig. 7. “On-the-fly” vs precomputed network.

All the previous experiments were run with a pre-composed
integrated network. To check if the composition is efficient enough
for “on-the-fly” use, we also performed the experiments shown in
figure 7, comparing the use of the static network with its “on-the-
fly” construction. It was clear, from early experiments, that a pure
“on-the-fly” use of the network was too slow and that a cache had
to be used. Besides the use of this cache, we also precomputed
some parts of the network that we expected to be frequently used.
The criterion was to precompute the most dense parts of the net-
work, computing the first few arcs (up to a depth of 4) starting
from the start of only those pronunciations which leave a language
model state with more than 30 arcs. We further enforced that only
states of the network with an outdegree over 5 were precomputed.
During recognition, the cache was flushed regularly. We see from
the results that the network computation still has a very apprecia-
ble impact on performance.

In order to investigate the scalability of the algorithm to larger
language models, some experiments were performed using cutoffs
of 10, 5 and 2. As can be seen in figure 8, although there is a neg-
ative impact of the larger language model at lower beams, the bet-
ter information available is used to easily outperform the smaller
model. The figure shows that, if allowed by the available memory,
there is much to be gained by using a detailed language model in
a single pass decoder.

15

20

25

30

35

0 0.5 1 1.5 2 2.5

W
E

R

xRT

10,10 CutOffs
5,5 CutOffs
2,2 CutOffs

Fig. 8. Performance variation with the increase of the language
model.

5. CONCLUSIONS

We have shown how the deterministic integration of the lexicon
with the language model can be performed “on-the-fly” in a finite-
state framework. We have also shown how to build very efficient
networks for real-time decoding in one pass. The results show
that pushing is a very important factor, and that it should be taken
into account by “on-the-fly” networks expansion algorithms. Our
current implementation of the algorithm is feasible for “on-the-fly”
use, but at the cost of some time or accuracy penalty.

In the future we plan to investigate better ways of selecting
which parts of the network should be precalculated for a given al-
lowed memory space, and also better ways of managing the cache
during recognition. We also plan to investigate, with more detail,
why the full minimization outperforms the preminimization of the
language model, hoping to find ways of improving the approxima-
tion.

6. REFERENCES

[1] M. Mohri, “Finite-state transducers in language and speech
processing,” Computational Linguistics, vol. 23, no. 2, pp.
269–311, June 1997.

[2] D. Caseiro and I. Trancoso, “On integrating the lexicon with
the language model,” in Proc. Eurospeech ’2001, Aalborg,
Denmark, Sept. 2001.

[3] M. Mohri and M. Riley, “Integrated context-dependent net-
works in very large vocabulary speech recognition,” in Proc.
Eurospeech ’99, Budapest, Hungary, Sept. 1999.

[4] M. Mohri, F. Pereira, and M. Riley, “Weighted automata in
text and speech processing,” in ECAI 96 Workshop. Aug.
1996.

[5] D. Caseiro and I. Trancoso, “A decoder for finite-state struc-
tured search spaces,” in ASR 2000 Workshop, Sept. 2000.

[6] H. Meinedo L. Almeida J. Neto, C. Martins, “The design of
a large vocabulary speech corpus for portuguese,” in Proc.
Eurospeech ’97, Sept. 1997.

[7] J. P. Neto H. Meinedo, “Combination of acoustic models in
continuous speech recognition hybrid systems,” in Proc. IC-
SLP ’2000, Beijing, China, Oct. 2000.

