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Like the other SpeechDat-Car databases, the Spanish one has
been collected using a 16kHz sampling frequency, and several
microphone positions and environmental noises. In this work,
we aim at� clarify whether there is any advantage in terms of
recognition performance by processing the 16kHz-sampled
signals instead of the usual 8kHz-sampled ones. Recognition
tests have been carried out within the Aurora experimental
framework, which includes signals from both a close-talking
microphone and a distant microphone. Our preliminary results
indicate that it is possible to get a performance improvement
from the increased bandwidth in the noisy car environment.
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Recently, SpeechDat-Car (SDC) databases have been collected
for several European languages, using various microphone
positions and environmental noises [1]. A subset of the SDC
Spanish database [2] is being used, along with a few others, in
the Aurora framework [3] for standardizing an advanced front-
end for distributed speech recognition (DSR) that must be
robust to the environmental conditions (ETSI STQ WI008). The
recognition tests are specified in such a way that speech signals
from both a close-talking microphone and a distant microphone
are involved [2].

Although the speech signals were collected using a 16kHz
sampling frequency, the signals used in the Aurora work are
downsampled to the usual 8kHz rate. Nevertheless, the standard
may eventually support terminals operating at sampling
frequencies of 11kHz and 16kHz, as the already developed DSR
standard for clean speech ETSI STQ W007 [4]. Actually, the
possibility of using a higher frequency bandwidth is an
advantage offered by DSR.

However, it is not clear that the speech information carried
by the additional band that is made available by the 16kHz
sampling frequency is worth using. The doubt comes not only
from the fact that speech intelligibility is not much affected by
speech content above ca. 4 kHz, but from the presence of non-
speech sounds within that additional band, e.g. music. Actually,
the initial test reported in [2] was rather discouraging.

In this work, we use the Aurora subset of the SDC Spanish
database, which consists of digit utterances, to train and test a
recognition system whose back-end is the one specified in the
Aurora framework [6]. In our tests, two alternative front-ends
are employed, which differ only in the way the filter-bank
energies (FBE) are processed at each frame: the conventional
mel-frequency cepstral coefficients (MFCC) [7], and the
spectral derivative parameters obtained by frequency filtering
(FF) [8]. The effects of compression and transmission of the
parameters are not considered in the paper.
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The SpeechDat-Car Spanish database comprises recordings of
600 different sessions from 300 speakers. A session consist of
119 read and spontaneous items recorded by five microphones
installed in a car, and for various driving conditions. Signals
from four distant microphones were recorded and stored in a
mobile platform installed in the car. The signal from the close-
talking microphone was transmitted simultaneously by GSM to
a fixed platform connected to an ISDN telephone interface.

In this work, we train and test the recognition system with
the subset of the SDC Spanish database that is being used by the
Aurora consortium, along with similar SDC subset databases of
other European languages, for the evaluation of robust DSR
front-ends.

The following utterances from the original SDC database
were included in that Spanish SDC-Aurora subset:

1) 1 sequence of 10 isolated digits
2) 1 sheet number, 4 digits
3) 1 credit card number, 16 digits
4) 1 PIN code, 6 digits
5) 4 utterances of isolated digits, 1 digit per utterance

                                                          
1 The SDC Spanish database has been developed at TALP-UPC
within the scope of the SpeechDat-Car project (LE4-8334),
sponsored by the European Commission and the Spanish
Government.  The digit subset of that database which is used in
this work has been provided by TALP-UPC to the Aurora
consortium for the evaluation of the alternative proposals for
standardizing a robust DSR front-end, and it is publicly
available through ELRA.



The Spanish SDC-Aurora database contains 4914
recordings (files) and more than 160 speakers. Recordings from
the close-talking microphone and from one of the distant
microphones are included in it. As in the whole SDC database,
the files are categorized into three noisy conditions – quiet, low
noisy and high noisy – depending on the driving conditions.
Table 1 shows the number of files in each of these three
conditions [2]. Note that an utterance recorded by both the
close-talking and a distant microphone is stored in two files.

Noise conditions Number of files Percentage

   quiet 792 16.12%

   low noise 2422 49.28%

   high noise 1700 34.60%

Total 4914 100%

�
������Number of files for each noise condition.

We have studied the six different environmental conditions
resulting from combining the three noise conditions and the two
positions of the microphones used to record the files. The most
immediate conclusion was that the noise is globally low-pass
and, therefore, the lower speech bands are strongly affected by
the noise. Additionally, it was interesting to notice that, for both
the high and low noise conditions, there is a spectral peak of
noise near 7.5kHz in a number of files, which can be as high as
-3dB with respect to the speech spectral maximum. It is also
worth mentioning there is a relatively high number of files with
background music noise.
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 Like for the other SDC-Aurora databases, three different
experiments are defined in [2], depending on the degree of
matching between training and testing. Baseline recognition
results for the three experiments are also given.
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In the well-matched (WM) experiment, 70% of all 4914 files (so
including both the close-talking and the distant microphone
versions) have been used for training and 30% for testing. There
are about 1800 repetitions of each digit for training and about
800 for testing.

In the medium-mismatch (MM) experiment, all the distant
microphone recordings from quiet and low noisy conditions are
used for training and all the distant microphone recordings from
the high noisy condition are used for testing. By using this
configuration, 1607 files are employed for training and 850 files
for testing. There are about 800 repetitions of each digit for
training and about 400 for testing.

In the high-mismatch (HM) experiment, 70% of the close-
talking microphone recordings from all conditions are used for
training (1696 files), and 30% of the distant microphone

recordings from low and high noisy conditions for testing (631
files). There are about 850 repetitions of each digit for training
and about 350 for testing.
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To generate the baseline results with the Spanish SDC-Aurora
database reported in [2], the ETSI STQ W007 standard front-
end for clean speech, which is based on the mel-cepstrum
parameterization [4], was used with the same back-end setup
from [6].

Table 2 shows the digit recognition accuracy for each of the
three experiments. Note that, for this database, the microphone
position is a much more important unmatching factor than the
noise condition, since the HM accuracy is much lower than the
MM one.

Accuracy

WM 86.85%

MM 73.74%

HM 42.23%

�
������Baseline recognition accuracy for the three
experiments of the Spanish SDC-Aurora database.

%	� �����������&����
'��
��
�����
(��������
�����������

In this paper, we will mainly report results with mel-cepstrum,
which is the basis of the speech representation proposed in the
standard ETSI STQ W007 for DSR [4], but a few results with
the alternative frequency filtering (FF) technique [8] will also
be presented. The FF parameters show a property that it is
relevant to the use of different sampling frequencies. In fact, as
the FF parameters lie in the frequency domain, they allow of a
straightforward change from a sampling frequency to another in
the own parameter domain.
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In the mel-cepstrum parameterization, a set of filter-bank
energies (FBE) is computed by a weighted integration of the
energy within each of the � mel-scaled sub-bands, and then
those FBEs are transformed to the cepstral domain through a
DCT, resulting in the mel-frequency cepstral coefficients
(MFCC). In our experiments, the front-end has been
implemented with HTK, so the distribution of the triangular
half-overlapped weighting functions used to compute the mel-
scaled FBEs is slightly different from the one of the MFCC
standard front-end for clean speech ETSI STQ WI007.

Additionally, we have performed a few changes with respect
to that standard since they seem to improve its performance for
noisy speech [9]: no pre-emphasys; square magnitude of the
DFT values instead of the magnitude itself; and a Hamming
window 30 ms long instead of 25 ms (the frame rate is kept: 10
ms). To compute the delta and acceleration features, we
employed the same time filters as in the standard MFCC front-
end. No additional time filtering like cepstral mean subtraction
was used.
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Recently, spectral derivative-like parameters, obtained by
filtering along the frequency variable the sequence of spectral
energies, have been successfully used in both clean and noisy
HMM speech recognition [8][9]. They are a set of almost
uncorrelated parameters which actually represent an alternative
to the cepstral coefficients, and have the additional advantage of
lying in the frequency domain.

In the usual implementation, if the logarithmic FBE of the �-th
sub-band is denoted by ����, the FF parameters are computed by

( ) ( ) ( )11 −−+= N6N6N6
))

(1)

i.e. by filtering the sequence of FBEs with the filter �����.
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We will begin with the experiments performed with SpeechDat-
Car with the usual sampling frequency, i.e. 8 kHz, and then we
will try if an improvement can be obtained using the 16 kHz
signals. Analogously, we will start with the ETSI’s standard
MFCC front-end, changing it in order to optimize its
performance in the SDC-Aurora framework, and then we will
present results with the alternative parameterization.
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The recognition tests have been carried out with the modified
standard mel-cepstrum parameterization presented in Section
4.1. Like in the standard front-end, �=23 sub-bands, =12
cepstral coefficients, and an entire band ranging from 64 Hz to
4000 Hz were used for the 8kHz-sampled signals. Table 3a
presents the recognition results. Notice they are better than
those reported in Section 3 for the clean-speech standard front-
end for both MM and HM experiments, but not for the WM
one.

The results in Table 3a show a large number of insertions
for any of the three experiments. We have observed that many
insertions are due to the fact that non-speech segments of high
energy are often mistaken as digits, mostly the ��� (one) digit.
Consequently, we decided to remove the static frame energy
from the parameter set, though keeping its two dynamic
versions. The corresponding results are shown in Table 3b. By
comparing the HM results from both Tables 3a and 3b, a strong
reduction of insertions can be noticed due to the removal of the
static energy. The substitutions are also noticeably reduced, and,
eventhough the deletions have increased, the effect in terms of
word accuracy is a strong increment. The same kind of changes,
although less accentuated, can be observed in the MM
experiment, and no meaningful changes are observed in the HM
experiment between both parts of Table 3.

If we do not constraint our experimental work to keep
exactly the same back-end from Aurora but we play with the
word insertion penalty parameter (� in HTK) in the Viterbi
decoding, it is possible to get a further recognition performance
improvement. However, as WM and HM show an opposite
deletion-insertion balance, to get a noticeable improvement, a

different � value should be allowed for each of the three
experiments.

Accuracy Del Subs Ins

WM 86.08% 132 361 628

MM 75.72% 195 295 613

HM 47.76% 204 788 745

       (a)

Accuracy Del Subs Ins

WM 86.51% 128 348 611

MM 79.71% 227 275 420

HM 74.23% 480 292 85

       (b)

�
�����. Recognition results for the 8kHz-sampled
signals using the modified standard MFCC: (a) with

static frame energy, (b) without it.

0	�	���!$#�!�+)���5�3�4�!�/ "#!

In the following, we are going to report results with 16 kHz
sampling rate. In this case, the entire band was chosen from 64
Hz to 7000 Hz, to discard the noise spectral peak around 7.5
kHz, and also because the band above 7 kHz is not meaningful
for speech intelligibility. Other changes were made to adapt the
MFCC front-end to the new sampling frequency: 1) the number
of sub-bands � was increased from 23 to 30 since, due to the
non-uniformity of the mel scale, 7 c; and 2) the number of
cepstral coefficients  was set to 15, in correspondence with the
increased number of sub-bands. Again, only the first and second
temporal derivatives of the frame energy were included, not the
static energy itself, thus having a total number of 47 spectral
parameters, 9 more than for 8kHz-sampled signals.

Accuracy Del Subs Ins

WM 87.56% 110 296 596

MM 79.90% 171 288 454

HM 68.57% 341 402 302

 (a)

Accuracy Del Subs Ins

WM 91.17% 219 253 239

MM 83.82% 354 329 152

HM 70.38% 576 306 103

 (b)

�
�����. Recognition results for the 16kHz-sampled
signals using the modified standard MFCC without the

frame energy : (a) p=0 (standard), (b) p=-50.

Results with this parameterization setup are shown in Table
4a. From them, we can not state that there is an improvement by
using 16 kHz; actually, there is a significant loss in the HM
experiment. However, we can notice by comparing both tables



that they show a different insertion-deletion balance, especially
for the experiment HM. Therefore, the word insertion penalty �
can be tuned to increase the average accuracy of the whole set
of three experiments. Using a -50 value for all the three
experiments, a remarkable improvement in WM and MM, and a
slight improvement in HM are obtained, as shown in Table 4b.

We have also performed tests with the FF parameterization,
computing the FBEs exactly in the same way of the last MFCC
test for 16 kHz (Table 4b), but using �=18 bands, since the four
additional bands cover the range from 4 to 7 kHz. Note that,
unlike for MFCC, no truncation of the parameter vector is
performed in the FF parameterization (for MFCC, � was 30).
Thus, instead of applying the DCT, those FBEs were frequency-
filtered with the filter �����. The two endpoints, which actually
are the 2nd and the 17th sub-band energies, were removed, since
the former is highly corrupted by the car noise, and the latter
corresponds to a band around 5-6 kHz, which does not carry
much speech information. Thus, 16 static spectral parameters
and their temporal derivatives (same filters than for MFCC)
were used as observation vector, which includes 48 elements,
one more than in the MFCC case.

Results for the FF parameterization are reported in Table 5
with �=-50 like in the MFCC results from Table 4b. By
observing both tables, we can see that FF improves MFCC in
both MM and HM experiments, and lies close to it in the WM
experiment. The insertion-deletion balance is similar for both
tables of results.

Accuracy Del Subs Ins

WM 90.14% 277 218 299

MM 84.39% 405 163 141

HM 73.92% 447 339 81

�
�����. Recognition results for the 16kHz-sampled
signals using FF parameters and p=-50.
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The above preliminary results are summarized in Figure 1,
where the best reported MFCC results are depicted, i.e. MFCC
for 8kHz corresponds to Table 3b, and MFCC for 16kHz
corresponds to Table 4b. Note that, using 16kHz, the results are
improved with respect to 8kHz, except for the HM experiment,
where they are similar.
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A change in the front-end has an effect on the number of word
insertions and its balancing with the number of word deletions.
If, due to front-end comparison purposes, no change is allowed
in the back-end, that effect may be misleading in deciding the
most effective front-end. For example, in our tests, we would
not have been noticed a clear improvement by using the 16kHz-
sampled signals if the word insertion penalty had not been
tuned.

Concerning the parameterization type, FF shows the
potential of outperforming mel-cepstrum, as it has already been
observed with other databases and recognition tasks [9]. A
major advantage of the FF parameters is the fact that, as they lie
in the frequency domain, they permit a straightforward change
from a sampling frequency to another in the own parameter
domain. Recognition tests with 8kHz, 16kHz and 11kHz will be
performed with these spectral derivative parameterizations by
using HMMs trained from signals of any of those sampling
frequencies.

From these presented preliminary results, it appears that a
larger bandwidth can yield a higher recognition accuracy,
although an increase of the number of features has to be
accepted. This advantage should be more apparent with phone-
based large vocabulary speech recognition tests.
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