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ABSTRACT

Multiple regression class MLLR transforms are investigated
for use with pronunciation models that predict variation in
the observed pronunciations given the phonetic context. Re-
gression classes can be constructed so that MLLR trans-
forms can be estimated and used to model specific acoustic
changes associated with pronunciation variation. The effec-
tiveness of this modeling approach is evaluated on the pho-
netically transcribed portion of the SWITCHBOARD con-
versational speech corpus.

1. INTRODUCTION

Pronunciation modeling for automatic speech recognition
provides a mechanism by which ASR systems can be adapted
to accented, spontaneous, or disfluent speech that is not well
described by the canonical pronunciations found in dictio-
naries. One aspect of this modeling problem is to build pre-
dictive or descriptive models for phenomena of interest that
can predict surfaceform pronunciation given the baseform
or canonical pronunciation. Methods are available that can
learn that the word IT can be pronounced as IH D rather than
IH T or that the words GOING TO can be treated as a single
entity pronounced G UH N AH [1].

Once these predictive models are trained they can be in-
corporated directly into an ASR system. An ASR system
nominally consists of a language model P(W); a dictionary
that maps word sequences to baseform pronunciation se-
quences P(B|W); and a set of acoustic models P(A|B; 0p)
that assign likelihood to the acoustic observations A given
the baseforms B. The notation 6 g indicates that the acous-
tic model parameters were trained using baseform transcrip-
tions of the acoustic training set. The pronunciation model
is assumed to be available as a distribution P(S|B) that
maps baseforms to surfaceform sequences S; techniques
that augment lexicons with frequent pronunciation alterna-
tives or use decision trees to map baseform phone sequences
to surfaceform sequences can be described in this way. The

maximum likelihood decoder can be stated as

argmax P(A|S, B)P(S|B)P(B|W)P(W) (1)
W,S,B

if appropriate conditional independent assumptions are made.

In addition to the pronunciation model, a particular form
of acoustic model P(A|S, B) is needed. A simple approx-
imation is available as P(A|S, B) ~ P(A|S;0p), where
acoustic models trained on baseform transcriptions are used
directly with the surfaceform sequences produced by the
pronunciation model. The ASR system is therefore able
to produce word hypotheses based on pronunciations not
present in the original dictionary. This straightforward ap-
proximation is especially effective because it allows the pro-
nunciation model to be incorporated into the ASR system
without retraining the ASR acoustic models. However since
the acoustic models used in this approximation were trained
on the baseform pronunciations, the recognition process is
inevitably biased towards word hypotheses based on canon-
ical pronunciations.

This observation leads to another aspect of the pronun-
ciation modeling problem which is to incorporate models
of pronunciation variability directly into acoustic model-
ing. Interestingly, it has been found that straightforward
approaches to this problem often fail. One possible ap-
proach would be to train a pronunciation model; verify that
it works well when used with a standard ASR system (by us-
ing the approach described in the previous paragraph); use
this pronunciation model to retranscribe the acoustic train-
ing set to obtain a surface form transcription; retrain the
acoustic models; and evaluate the new ASR system with the
pronunciation model. This approach yields a set of mod-
els with parameters s which can also be used to approxi-
mate P(A|B, S) as P(A|S;0s). However, as has been dis-
cussed by Saraclar et al. [2], this can lead to degradation
in ASR performance. Saraclar et al. conclude that it is in-
correct to approximate P(A|S, B) by either P(A|S;6p) or
by P(A|S,6s). They demonstrate that when a base phone
b is realized as a surfaceform s, the acoustic model should
model it as such, i.e. it should model it not as an s but as a



particular variant of b. In other words, surfaceforms should
not be modeled without consideration of the baseform from
which they originate. In terms of modeling, P(A|S, B)
should retain dependencies on both baseform and surface-
form.

2. MLLR PRONUNCIATION MODELING

Our goal is to use acoustic model adaptation techniques
to approximate the distribution P(A|S, B) by transforming
the parameters of the baseform ASR system P(A|B;0p).
We assume that a surfaceform transcription of the acous-
tic training data is available, either from human annotators
or through forced alignment using the pronunciation model
and the acoustic models #p. We then align the surface an-
notations to the baseform transcriptions using a phonetic
feature distance [1]. This symbol-to-symbol alignment al-
lows us to construct a hybrid transcription for the training
data: the original baseform sequence {b;} after alignment
with the surface sequence {s;} becomes {b;:s;}. This hy-
brid transcription is used in supervised MLLR adaptation
to estimate transforms T's p that are applied to the param-
eters of the baseform models to make the approximation
P(A|S, B) ~ P(A‘TS,B . 03)

Phonetic transformation regression classes are used in
modeling the potentially very large number of pairs b:s.
Suppose an instance of the words SUPPOSE ITS with base-
form transcription S AX P OW Z IH T S has the surfaceform
annotation S IH P OW S IH D Z. After alignment the hy-
brid transcription becomes S:S AX:IH P:P OW:OH Z:S IH:IH
T:D S:Z. A set of phonetic transformation regression classes
could be defined as

T s = b, no change
b unvoiced, s voiced
b nasal, s not nasal

Tvm’,ce+

Ty s =
s Tnasalf

)

In the examples given here, the transform 7',gice+ 1S
trained on all data whose annotation indicates that an un-
voiced baseform has changed to a voiced surfaceform, for
example data labeled as S:Z or P:B.

Through the choice of regression classes we can adapt
the models to the amount of available data or the expected
phonetic variability. For example, it may be that consonants
are observed to have little surfaceform variation, so regres-
sion classes might be constructed to describe only vowel
variation. The classes need not be entirely complementary.
For example, classes T'oicet+ and Tpiosive:voice+ could co-
exist. Instances of both P:B and S:Z would be used to train
the former, whereas instances of S:Z would not be used to
train the latter. This allows a hierarchy of transforms that
can be applied depending on the amount of training data
available for each regression class.

The transform 77 associated with the no change pho-
netic transformation class is also estimated since the hybrid
classes should be purer than the original baseform phonetic
classes. For example, if an acoustic model was to be trained
for P:P, all instances of P:T and other surfaceform variants
would be excluded from training. This more homogeneous
training set allows sharper acoustic models to be trained
even for cases when no surfaceform variations are observed.

We note that adaptation techniques have been used be-
fore for pronunciation modeling. In dialect adaptation [3, 4]
or in training a speaker dependent ASR system it is possi-
ble to use MAP or other acoustic adaptation techniques to
refine the models to the new domain. It is assumed that
sufficient data is available that the existing dictionary and
model architecture are able to model the regular and consis-
tent variations found in the data. However in previous work
a predictive model of pronunciation change was not incor-
porated into acoustic model adaptation. The goal of this
work is to explore the coupling of predictive pronunciation
models with acoustic adaptation techniques.

3. PRONUNCIATION MODELING EXPERIMENTS

In the experiments we report here we focus on the prediction
of surface pronunciations given the word sequence

argmax P(A|S, B)P(S|B)P(B|W). 2)
S,B

This paradigm isolates the prediction of phonetic variation
from the larger problem of incorporating pronunciation mod-
els into an ASR system with the goal of reducing word
error rate. Performance is measured relative to phonetic
transcriptions provided by expert phoneticians. We use the
test and training set definitions and evaluation procedures
established for the phonetic evaluation component of the
2000 Large Vocabulary Conversational Speech Recognition
evaluation [5] that makes use of the ICSI phonetically tran-
scribed SWITCHBOARD collection [6].

Baseform acoustic models P(A|B; 6 ) consisting of 48
monophone models were trained as in the JHU 2000 pho-
netic evaluation system [5]. The models were estimated
on the training portion of the ICSI data using the phonetic
transcription obtained from the lexicon; we note that mono-
phone models have been found to be better for the predic-
tion of surface variation than triphones. Each model was a
three state left-to-right HMM with an 8 mixture, diagonal
covariance Gaussian output density trained using HTK [7].
Surfaceform monophone acoustic models P(A|B; 0g) with
the same structure were also trained on the same data using
the ICSI surfaceform transcriptions.

The decision tree pronunciation model [1] used to ap-
proximate P(S|B) was based on the JHU 2000 phonetic
evaluation system [5]. The models were trained on the train-



ing portion of the training set and incorporated only intra-
word phonetic context; cross-word phonetic context was not
used.

The availability of the surfaceform and baseform acous-
tic models allow us to approximate P(A|S, B) in Equa-
tion 2 as either P(A|fg) or P(A|f6p). The pronunciation
model was applied to the test set word transcriptions to gen-
erate lattices of pronunciation alternatives for the test set
utterances. As reported by Saraclar el al. [8], the surface-
form trained acoustic models gave the best phone error rate
relative to the reference ICSI test set transcriptions.

Acoustic Model | Phone Error Rate (%)
Baseform 21.75
Surfaceform 20.50
Table 1: Baseform and Surface Acoustic Model Perfor-
mance.

To train the MLLR transforms to be used as pronunci-
ation models a surfaceform-tagged baseform transcription
of the training set was produced by a symbolic alignment
of the baseform transcriptions to the surfaceform transcrip-
tions using phonetic feature distances [1]. For given sets
of regression classes, each regression class transform was
trained with six iterations of MLLR. Only mean transforms
were estimated; variances were not adapted.

Tagged lattices were created from the lattices of pronun-
ciation alternatives by tagging each surfaceform lattice link
by the baseform phone from which it originated. Deletion
arcs were left untouched. Only two instances of insertion
were modeled: en — en n and el — el [. After MLLR
transform estimation, decoding was done on the tagged-test-
set lattices. Transforms were then applied to the baseform
acoustic models according to the regression class of each
tagged lattice link and Viterbi rescoring of the lattice was
performed to find a string of tagged phones; the surface-
form tag sequence was taken as the hypothesis surfaceform
pronunciation.

Class Phones Class Phones
fl AE ch IX UX
fml EH bl AA AY AW
fmh IHEY ER bml | AO OW OY
fh IYY bmh UH
cml AH AHI bh W UW
cmh | AX EL EN AX EM v all vowels

Table 2: Base Acoustic Classes Used to Construct Phonetic
Transformation Regression Classes. Classes are based on
vowel manner and place of articulation: front, central, back,
high, middle, low.
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Figure 1: Phonetic Transformation Regression Tree. Identi-
tiy transformations for silence, vowels, and consonants are
defined at nodes 2, 6, and 7.

We report results using phonetic transformation regres-
sion classes based on the vowel groupings listed in Table 2.
Regression classes based on consonant changes yielded very
little improvement when used alone and had little effect
when used along with vowel change regression classes. This
is consistent with the observed behavior of both the base-
form and surfaceform phone recognition systems which rec-
ognize consonants more reliably than vowels.

Figure 1 shows the regression tree with the phonetic
transformation classes used in these MLLR pronunciation
modeling experiments. The v2 f (vowel2front) label, for ex-
ample, associated with node 10 specifies a regression class
for baseform - surfaceform pairs b: s such that b is a vowel
and s is a front vowel. The regression tree node indices also
give the order in which the regression classes were created.

For purposes of comparison, we constructed regression
trees using the routines provided by the HTK 3.0 Toolkit
[7]. These routines create regression classes based on inter-
Gaussian distances, but without consideration of phonetic
similarity; relatively little improvement in Phone Error Rate
(PER) over the baseline was observed using these classes.
Performance was also found to be sensitive to the choice of
regression classes. For example, adding the class v2¢ im-
proves PER, while adding a class that allows only changes
in location, i.e. non-central vowels realized as central vow-
els, does not improve PER.

Table 3 presents recognition results showing that phone
error rate improves as phonetic transformation classes are
added. As more classes are added performance approaches
that of acoustic models trained directly on surface form tran-
scriptions. Clearly, enough classes can be added so that
each state, and eventually each Gaussian component, will be
trained individually which would produce the surfaceform
acoustic models. In these simple experiments we do not



Regression Class Phone Error
Classes Added Rate (%)
| Baseform Acoustic Models | 21.75 |
1 global 21.70
2 silence 21.72
3 no change 21.49
4 cv 21.38
5 v2c 21.32
6 v2f 21.16
7 v2b 21.06
8 v2cml 20.99
9 v2fmh 20.94
10 v2fh 2091
11 v2bl 20.91
12 v2bml 20.86

| Surfaceform Acoustic Models | 20.50 |

Table 3: Pronunciation Modeling Performance Showing
Phone Error Rate Reduction as Phonetic Transformation
Regression Classes are Introduced.

expect an improvement over the surfaceform models since
the corpus is fairly homogeneous and there is sufficient data
to train each individual surfaceform model. These exper-
iments demonstrate however that phonetic transformations
defined in terms of broad acoustic classes are able to capture
nearly all of the predictive gains that can be obtained using
detailed acoustic models trained on surfaceform transcrip-
tions.

4. CONCLUSION

Phonetic transformation regression classes are introduced to
model acoustic change associated with pronunciation varia-
tion. Ideally the application of this approach will allow a hi-
erarchy of phonetic transformation classes to be defined in
which individual baseform-surfaceform pairs are assigned
to the most appropriate class based on acoustic similarity.
Automatic techniques for constructing regression classes for
MLLR could also be used to develop hierarchies in an un-
supervised manner. Ultimately it is hoped that these tech-
niques will allow for the development of detailed transfor-
mation procedures that improve the adaptation of ASR sys-
tems to new speakers and dialects through the tighter cou-
pling of acoustic adaptation and detailed models of phonetic
variation.
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