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ABSTRACT

Most published adaptation research focuses on speaker adap-
tation, and on adaptation for noisy channels and background
environments. In this paper, we study acoustic, grammar,
and combined acoustic and grammar adaptation for creat-
ing task-specific recognition models. Comprehensive ex-
perimental results are presented using data from a natural
language quotes and trading application. The results show
that task adaptation gives substantial improvements in both
utterance understanding accuracy, and recognition speed.

1. INTRODUCTION

Techniques for acoustic adaptation, such as maximum-
likelihood linear regression (MLLR) [1], stochastic match-
ing [2], and maximum a-posteriori (MAP) adaptation [3],
have been well studied in the literature. These techniques,
and many variations on them have been used for speaker [1],
dialect [4], and channel adaptation [2] with considerable
success. In this paper, we focus instead on task adaptation
where general speech recognition models are adapted to a
particular application.

Most previous studies have reported only the accuracy
improvement from adaptation. However, particularly in real
applications, it is important to focus also on speed. We
present experimental results to show that acoustic and gram-
mar task adaptation give substantial accuracy and recogni-
tion speed improvements over the baseline models. Also,
improvements from acoustic and grammar adaptation are
shown to be additive.

2. MOTIVATION FOR TASK ADAPTATION

In this paper, we focus on improving the performance of
telephone-based speech recognition applications using task-
specific adaptation. Examples of such applications include
stock-quotes, keywords, digit-strings (such as telephone num-
bers), and name recognition (for example, in voice dialing).
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For our experiments, we use task-specific probabilistic fi-
nite state grammars (PFSGs), with a dictionary that cov-
ers all the words in the test grammars. The hidden Markov
model (HMM)-based acoustic models are trained on large
amounts of data collected from various applications. These
cover various speaking styles, channel conditions, and pho-
netic contexts.

We achieve very good accuracy using this approach.
However, significant improvements can be achieved by
adapting the models to each task. Probabilities on gram-
mar paths are clearly task-specific. Learning these proba-
bilities using an automatic data-driven adaptation procedure
gives very good results. From an acoustic modeling point of
view, one would expect context-dependent phonetic cover-
age to be task specific. For example, a stock-quote task has
different coverage than a digit recognition task. There may
even be dialect or speaking style differences specific to each
application. Acoustic adaptation can improve performance
in these scenarios.

Task adaptation gives sharper models that are better
matched to the application data. This results in better ac-
curacy. The adapted models also better discriminate against
each other, thus reducing the competing hypotheses during
recognition. This results in faster recognition.

3. ADAPTATION ALGORITHMS

For acoustic adaptation, we use a MAP-based smoothing
approach motivated by [3]. We adapt the mean (u) and vari-
ance (02) parameters for the HMM Gaussians in the follow-
ing manner:

pa = (1=XNpo + Aup
oh = (L=XN(04 +ud) +Nop + up) — 1% (1)
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The subscript A refers to the adapted parameters, O to the
original parameters, and D to the maximum-likelihood (ML)
estimates of the parameters computed from the adaptation



data. ~ is a tuning weight which interpolates between the
original model and the adaptation data [5]. A smaller value
gives more weight to the adaptation data.

A similar smoothing approach is used for grammar adap-
tation. The probabilities P; for each of N possible paths at
a point in the grammar are computed by interpolating be-
tween the ML estimates computed from the adaptation data,
and a uniform distribution:

1 C;
Pia=Q1-N%=+Ap—
N Zf\; Ci
where C; are the number of times path ¢ was observed in
the adaptation data, and the weights A are computed using
deleted interpolation.
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4. MODES OF ADAPTATION

Task adaptation can be done in two modes: supervised and
unsupervised. In supervised adaptation, human transcrip-
tions are used along with the recorded utterances for adap-
tation. On the other hand, unsupervised adaptation makes
use of the recognition hypotheses. Supervised adaptation
typically gives better performance than unsupervised adap-
tation. However, it can only be used in an offline mode. For
a fully automatic online approach, unspervised adaptation
would be used.

5. USE OF CONFIDENCE SCORES FOR DATA
FILTERING

An important aspect of unsupervised adaptation is that the
recognition hypotheses are used to adapt the models. These
hypotheses could be erroneous, and thus detrimentally af-
fect the adaptation process. If we could automatically se-
lect only those utterances whose recognition hypotheses are
likely to be correct, adaptation performance could be im-
proved. We use a confidence-score-based approach to ad-
dress this problem.

Our system computes an integer-valued confidence score
between 0 and 100 for each hypothesis based on phone-
level posterior probabilities [6]. A score of 0 indicates very
low confidence in the recognition result, while a score of
100 indicates very high confidence. In this paper, we use
an algorithm that compares these confidence scores against
an adaptation confidence threshold. Only utterances that
cross the confidence threshold are used for adaptation. We
show that this threshold-based filtering gives superior per-
formance for unsupervised adaptation.

6. EXPERIMENTAL RESULTS

The acoustic models we used are based on Genonic hidden
Markov maodels (HMM). In Genonic HMMs [7], triphone

states are clustered using bottom-up agglomerative cluster-
ing. Each state cluster shares a set of Gaussians (also called
a Genone). Each state in a cluster has an independent set of
mixture weights to the Gaussians in the shared Genone.

We ran experiments using field data from a natural lan-
guage stock quotes and trading application. The language
for the application is American English. The acoustic mod-
els used about 13,000 triphone HMMs, with 1000 Genones,
and 32 Gaussians per Genone. We report experimental re-
sults on two grammars, denoted as “Main”, and “Equities”.
The “Main” grammar describes various keywords and
phrases for navigating the application, and also allows stock
quotes, and full natural language trading commands. An ex-
ample of a trading command is:

I want to buy five hundred shares of CompanyX
at twenty dollars

The “Equities” grammar is essentially a stock-quote gram-
mar for a large number of stock symbols. The “Main” test
set contains 3253 utterances and the “Equities” test set con-
tains 5141 utterances. Both test sets contained only in-
grammar (IG) utterances, i.e., utterances whose reference
transcript could be parsed by the respective grammars. In
all the experiments below, we use the sentence understand-
ing error-rate on these test sets as our performance measure.

For adaptation, both in-grammar and out-of-grammar
(OO0QG) utterances were used. An adaptation utterance is IG
or OOG if its reference transcript (supervised), or its recog-
nition hypothesis (unsupervised) can or cannot be parsed
by the respective grammar. Grammar adaptation was run
separately for each of the test grammars, using the IG ut-
terances from the respective grammars. However, acoustic
adaptation was run using IG and OOG utterances from all
the application grammars. These included the “Main” and
“Equities” grammars, and also other grammars in the ap-
plication. The same adapted acoustic models were used for
the two test sets. Real caller data is used; thus the distribu-
tion of the data and grammars used in the adaptation set is
representative of real system usage.

The baseline system used in this study uses uniform
grammar probabilities so as to demonstrate the effect of
grammar adaptation. Actual fielded systems for similar ap-
plications use grammar probabilities estimated in supervised
mode with 200,000 utterances or more, resulting in signifi-
cantly lower error rates.

6.1. Confidence-Based Data Selection

For unsupervised adaptation, the recognition hypothesis is
used to align the data and compute MAP adaptation statis-
tics. To mitigate the effect of recognition errors, we used
(for adaptation) only those utterances whose confidence
score was above a threshold. Table 1 shows the error rate



Utterance || Understanding Error (%)
Selection

Threshold || Main | Equities

| Baseline ]| 15.86 | 14.76 |

0 8.82 11.24

30 8.76 11.05

50 8.33 10.46

60 8.67 10.39

70 9.22 10.74

Table 1. Comparison of sentence understanding error-rates
for unsupervised ACG adaptation using various confidence
thresholds to select 10,000 adaptation utterances

for different confidence thresholds. In each case, 10,000
adaptation utterances were selected. Both acoustic (AC) and
grammar (G) models were adapted. We denote this as ACG
adaptation.

The table shows that unsupervised adaptation with any
threshold is significantly better than the baseline. A thresh-
old of 50 is a good choice. Smaller thresholds result in ut-
terances with incorrect recognition hypotheses being used
for adaptation. This results in worse performance for both
test sets. Larger thresholds result in the data being biased
toward the utterances that were correctly recognized in the
first place. This also results in worse performance for both
test grammars, though the degradation for the Equities gram-
mar appears to be small. All future unsupervised experi-
ments reported in the paper use a threshold of 50.

6.2. Amount of Adaptation Data

It is expected that increasing the amount of adaptation data
would result in a decrease in the error-rate. To evaluate the
effect of this, we increased the amount of adaptation data
in 5000 utterance chunks. Figure 1 shows the error-rates
for supervised ACG adaptation for both test sets. The fig-
ure clearly shows that adaptation gives significant improve-
ments for both test sets. The adaptation error clearly de-
creases with increasing amounts of data. After about 30,000
utterances, the improvements are smaller. However, even at
this point, the curves still have a small slope, indicating that
using a huge amount of adaptation data (>> 30, 000 utter-
ances) can give further improvements. While the figure only
shows supervised ACG error-rates, we observed similar be-
havior for all the other adaptation cases.

6.3. Supervised and Unsupervised Adaptation

Since supervised adaptation has access to the correct tran-
scripts, we expect it to perform better than unsupervised
adaptation. We compared the performance of supervised
and unsupervised ACG adaptation using 35,000 adaptation
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Fig. 1. Effect of varying amount of adaptation data for su-
pervised ACG adaptation

[ | Main | Equities ||
Baseline 15.86 | 14.76
Unsup ACG 7.62 8.60
(Improvement(%)) || (52.0) | (41.7)
Sup ACG 6.73 7.72
(Improvement(%)) || (57.6) | (47.7)

Table 2. Sentence understanding error rates for supervised
and unsupervised ACG adaptation using 35,000 adaptation
utterances. Percentage relative improvements over baseline
in parenthesis

utterances. The results are given in Table 2. Both supervised
(Sup) and unsupervised (Unsup) adaptation give a huge gain
over the baseline. Further, supervised adaptation gives a sig-
nificant improvement over unsupervised adaptation (about
10% relative) for both test grammars.

6.4. Effect of Acoustic and Grammar Adaptation

Since acoustic and grammar adaptation modify different
recognition models, the improvements from both are likely
to be additive. We use supervised adaptation on 35,000
utterances to compare the effect of acoustic and grammar
adaptation on both the test sets. Table 3 shows the error-rate
for acoustic only (AC), grammar only (G), and combined
acoustic and grammar (ACG) supervised adaptation. It is
clear that grammar adaptation gives a bigger improvement
than acoustic adaptation for this task. For example, on the
“Main” grammar test set, grammar adaptation gave a 52.0%
improvement, while acoustic adaptation gave a 11.2% im-
provement. However, the improvements are nearly additive,
so that combined acoustic and grammar adaptation gave a
57.6% improvement.



[ | Main [ Equities |
Baseline 1586 | 14.76
Sup AC 14.08 | 13.01
(Improvement(%)) || (11.2) | (11.9)
Sup G 7.62 8.15
(Improvement(%)) || (52.0) | (44.8)
Sup ACG 6.73 7.72
(Improvement(%)) || (57.6) | (47.7)

Table 3. Sentence understanding error rates for supervised
acoustic, grammar, and combined acoustic and grammar
adaptation using 35,000 utterances. Percentage improve-
ments over baseline in parenthesis

6.5. Effect of Adaptation on Recognition Speed

Adaptation results in models that are better matched to the
test condition. The resulting models are sharper and hence
have higher discrimination against competing models. This
results in fewer hypotheses being maintained in the Viterbi
beam search, giving faster recognition. Recognition accu-
racy can be traded off for speed. Thus, it is important to
jointly view accuracy and speed, especially for real applica-
tions.

Figure 2 shows the speed-accuracy trade-offs for the
baseline models and different adapted models for the Eq-
uities test set. The curves in the figure are for the case of
unsupervised adaptation using 35000 utterances. The points
on the curve represent different pruning values in the Viterbi
beam search. The large circles on each curve represent the
operating point using the default pruning value used by the
actual application. In the figure, the recognition times are
given as a factor of the baseline system’s actual recognition
time using the application’s default pruning value. If we
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Fig. 2. Effect of unsupervised adaptation with 35,000 utter-
ances on speed and accuracy

maintain the error-rate at the baseline level, then the figure
shows that acoustic (AC) adaptation gives a 25% speedup,
grammar (G) adaptation gives a 45% speedup, and com-
bined acoustic and grammar adaptation (ACG) gives a 50%
speedup. As the large circles in the figure show, adapted
models are also faster at the same pruning threshold. Thus,
if we maintain the original baseline recognition speed by in-
creasing the pruning value for the adapted models, we can
get an even bigger accuracy improvement than the substan-
tial ones already shown in previous sections.

7. SUMMARY AND CONCLUSIONS

This paper presented a detailed study of task adaptation.

Both supervised and unsupervised adaptation was studied,

as was acoustic, grammar, and combined adaptation. We

presented a confidence-score-based filtering algorithm to ad-
dress the problem of erroneous recognition hypotheses for

unsupervised adaptation. Detailed experimental studies in-

dicate that the approach gives substantial improvements, both
in accuracy and speed, over the baseline models.
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