
DIALOGUE MANAGEMENT IN THE TALK’N’TRAVEL SYSTEM

David Stallard

BBN Technologies, Verizon

ABSTRACT

A central problem for mixed-initiative dialogue management is
coping with user utterances that fall outside of the expected
sequence of the dialogue. Independent initiative by the user may
require a complete revision of the future course of the dialogue,
even when the system is engaged in activities of its own, such as
querying a database, etc. This paper presents an event-driven,
goal-based dialogue manager component we have developed to
cope with these challenges. The dialog manager is explicitly
architected for asynchronous input and flexible control, and uses
a tree-ordered rule language we have developed that also
provides for close coupling with discourse processing. The
dialogue manager is implemented as part of Talk'n'Travel, a
simulated air travel reservation dialogue system we have
developed under the US DARPA Communicator dialogue
research program, whose purpose and scope we also briefly
summarize.

1. INTRODUCTION

We discuss the dialogue management component of the
Talk’n’Travel system. Talk’n’Travel is a research prototype
system sponsored under the Communicator program [2] of the
US Defense Advanced Research Projects Agency (DARPA). A
general description is in [1]; some other systems in the program
are [3], [7], and [9]. The common task of this program is a mixed-
initiative dialogue over the telephone, in which the user plans a
multi-city trip by air, including flight, hotel, and rental car
reservations, all in conversational spoken English.

A block diagram of Talk’n’Travel is shown in Figure 1. The
system consists of the Byblos statistical speech recognizer, the
GEM robust language understander, the dialog management
component, a language generation module, and a COTS text-to-
speech system. A remote flight reservations web site provides
live flight schedule data, with a central hub component providing
communication between the various modules.

A key goal of this work is finding a compact and general way to
represent dialogue control schemas, and especially to handle user
utterances that dramatically change the dialogue state and
disrupt the planned dialogue flow. If the user changes his mind,

for example, or corrects the system’s misunderstanding, the task
may be completely restructured, rendering complex ongoing sub-
dialogues irrelevant, and/or resurrecting previously completed
ones. Suppose, for example, that the system and the user have
previously agreed on a flight from Boston to Denver for
September 20th, and the following dialogue then ensues:

 S: Do you want a hotel in Denver?
 U: Yes, I do.
 S: Please stand by while I look up the hotels on the web.
 S: [pause for 5 sec]
 S: OK, got them.. How about Marriot for $130 a night?
 U: That’s too expensive.
 S: Cheaper than $130. How about Holiday Inn for $80?
 U: Forget it, I don’t want a hotel.
 S: You don’t want a hotel. How about a rental car?
 U: No, I think I want to leave on the 22nd instead.

In this dialogue, the entire hotel reservation sub-dialogue has to
be aborted, including negotiations, database queries, etc. What is
more, the previous flight reservation sub-dialogue has to be
partially resurrected as well, because the user has changed the
date, requiring a new query to the web site, plus re-negotiation
of the flight booking.

An additional problem arises from the potential asynchrony of
user utterances. Suppose the user chose to say “Forget it. I
don’t want a hotel” during the pause in the dialogue while the
the system was querying the web site for hotel availability.
Even though the system was not engaging him in dialogue at that
point, the user would naturally expect the system to understand
him, abort the query and hotel booking sub-task, and return to
the rest of the task.

Clearly, it is prohibitive to explicitly code for these various
possibilities at every point in the dialogue control scheme. The
challenge we explore in this paper is how to accommodate these
disruptive events in a highly general and flexible way, without
complicating the dialogue control scheme unmanageably.

In the remainder of the paper, we discuss our strategies for
solving these problems, which include an event-driven dialogue

Figure 1: Talk’n’Travel Architecture

TELEPHONE

LANGUAGE
GENERATOR SPEECH

SYNTHESIZER

LANGUAGE
UNDERSTANDER SPEECH

RECOGNIZER

DIALOG
MANAGER HUB

FLIGHT
WEB SITE

TELEPHONE

LANGUAGE
GENERATOR SPEECH

SYNTHESIZER

LANGUAGE
UNDERSTANDER SPEECH

RECOGNIZER

DIALOG
MANAGER HUB

FLIGHT
WEB SITE

manager and a domain-independent tree-ordered rule dialogue
control language, and present tentative evaluation results.

2. EVENT-DRIVEN INTERACTION

At any given time, a dialogue system is in one of three high-level
states:

1. Speaking to the user
2. Waiting for the user to speak
3. Doing something else (e.g., querying a database)

Usually, barge-in is thought of as the ability of the user to
interrupt the system while it is speaking, so that he can be heard
by the system in state 1 as well as state 2. Many dialogue
systems do not have a state 3 (or are in it for only a neglible
period of time), because they move from prompt to prompt and
do not have high-latency computations such as remote queries
into their dialogue. But if a system does have a state 3, it is
surely not reasonable for it to be deaf to the user during that
period. Rather, the user should be able to barge in during those
intervals as well.

Most dialogue frameworks provide a synchronous “prompt”
function, like the PROMPT tag of VoiceXML [10], that plays
an audio prompt to the user, and returns when either the user
replies or a timeout period expires. If the user barges in over the
prompt, this function will simply return early. This strategy
will cope with states 1 and 2, but not with state 3, since the
prompt function will not be executing during that period.

In order to overcome this limitation, the Talk’n’Travel dialogue
manager adops a completely different approach that is event-
driven and asynchronous by design. Figure 2 shows a block
diagram of the dialogue manager, which consists of an event
queue, an action manager, and a state manager, together with
their associated knowledge bases. The event queue holds events
received from the speech recognizer, speech synthesizer, and
database query modules, which run in their own separate
threads. The events received may be meaning representations of
the user utterance, results from an external web query, and so
forth.

The action manager determines the next action to execute, based
on the most recent event, the dialog control model, and the
current dialogue state. The system executes this action, and then
checks the event queue for any new event. If an event is found,
the state manager uses it to update the dialogue state
accordingly. For example, if the event corresponds to a user

utterance, the state manager will use the meaning representation
of the utterance to update the constraints in the dialogue state.
It does not matter for this purpose whether the event was
received in response to the system’s prompt, or whether it was
spontaneous.

System actions such as prompts or database queries work by
delegating the body of their computation to separate threads,
and therefore complete very quickly. The event queue is
checked each time an action is executed, so it is checked very
frequently, and events are handled very soon after they arrive on
the queue.

3. REPRESENTING DIALOGUE STATE

We view the dialogue as a cooperative attempt between user and
system to find values for a set of descriptive entities E1,…,En,
subject to a set of constraints on those entities C1,…,Cm. In the
air travel problem, the Ei are air, hotel, or rental car bookings,
and the constraints Cj are restrictions that the user imposes,
such as “from Boston”, “after nine AM”, etc. For these
purposes, the dialogue state at any given time is simply the
complete set of such constraints that the user has expressed up
to that time.

The constraints are represented by expressions called “path
constraints”, and are written in the form:

P R t1,…,tn

where P is a path representing a functional composition of one
or more attributes, R is a relation of n+1 argument places, and
the t1,…,tn are zero or more argument terms. The interpretation
of the path constraint is that the relation R holds between the
value of the composite function P and the arguments t1,…,tn.
The following is an example.:

LEGS.2.FLIGHT.DEPART GT 9:00AM

This represents the constraint that the departure time of the
flight of the second leg of the trip be after 9:00 AM. that the
attributes making up the path are separated by periods. The
dialogue state could contain this path constraint if the user had
at some point during the dialogue said “I want to return
sometime after nine in the morning”.

A pair of distinguished relations, SOME and NONE, is used to
represent, respectively, whether the user wants or does not
want whatever object the path describes. These relations are
unary, meaning that they do not take arguments on their right.
The following is an example, indicating that the user does not
want a hotel in his destination city:

Figure 2: Dialogue Manager

ACTION
MANAGER

STATE
MANAGER

DIALOG
MODEL

DIALOG
STATE

Event

Action

New
State

External
Events

ACTION
MANAGER

STATE
MANAGER

DIALOG
MODEL

DIALOG
STATE

Event

Action

New
State

External
Events

LEGS.1.HOTEL NONE

The language understanding component of Talk’n’Travel outputs
sets of path constraints as its meaning representation. For
example, for “I want to fly to Denver on Monday” it would
produce:

FLIGHT.DEST EQ DENVER
FLIGHT.DATE.DOW EQ MONDAY

The state manager combines these constraints with the existing
dialogue state to produce a new dialogue state. A number of
steps are involved. One is resolving ambiguity, such as figuring
out what leg of the trip that user is talking about, and which
“Monday” he is referring to. Another is merging the new
constraints with the existing ones, and determing which if any of
the existing constraints they should replace. The end result at
each dialogue turn is (hopefully) a consistent and coherent
picture of what the user wants from the system.

4. THE DIALOGUE CONTROL MODEL

The dialogue control model has the form of a tree, expressing a
goal/sub-goal structure. The leaves of the tree correspond to the
system’s actions, such as prompting the user, querying the
database, etc., and the interior nodes control and order the
execution of these actions. Each action has an underlying goal it
seeks to achieve, such as finding out what city the user wants to
fly to, or what day he wants to leave on. Actions also have
relevancy and executability conditions. Each of these conditions
is represented by individual predicates attached to the action.

An example action is the following, which prompts the user for
the departure date of a flight on the second leg of his trip:

 (ELICIT LEGS.2.FLIGHT DATE
 isRelevant: (isWanted LEGS.2.FLIGHT)
 isAchieved (filled LEGS.2.FLIGHT.DATE)
 isExecutable: true
 utterance: “What day are you leaving?”)

This action will be relevant if the path LEGS.2.FLIGHT is
wanted (that is, if the user is not on a one-way trip), and
achieved if the system knows what date the user wants this
flight to be on. The action is by default always executable.
Execution of this action will result in the user being prompted
with the argument utterance (“What day are you leaving?”).

The interior nodes of the tree include control structure nodes,
such as WHILE and WHENEVER, and an iteration node,
FORALL. Other interior nodes represent plan invocations
designed to achieve a complex sub-goal. The complete dialogue
model tree is traversed from left to right, depth-first, subject to

the control structure nodes, until it finds an action which is
relevant, whose underlying goal is not yet achieved, and which is
executable.

Once an action has been selected for execution, it may be
executed repeatedly until either it achieves its goal, or the
dialogue state changes so that the action becomes no longer
relevant or no longer executable.

The following represents a (highly simplified) plan for finding
out if the user wants a hotel, and booking him one if he does:

 (defplan getHotel ($hotel)
 (askIfWanted $hotel utterance: “Do you want a hotel?”)
 (while (isWanted $hotel)
 (startFetch $hotel)
 (whenever (isFetching $hotel)
 (speak “Please stand by, while I look up the hotels.”)
 (waitForRetrieval $hotel

 utterance: “Still fetching.”)
 (speak “OK, got them”))
 (offer $hotel
 utterance: “Do you want [current $hotel]?”)))

The ‘askIfWanted’ action is achieved when the system knows
that the argument path is either wanted or unwanted – that is,
that the user either wants or does not want a hotel. If this
information is already known because the user volunteered it
previously on his own initiative, the action will not be invoked.
Otherwise, it will be invoked and prompt the user with the
argument utterance “Do you want a hotel?”.

If the user does want a hotel, the WHILE conditional node that
follows will allow traversal of the sub-tree below it, giving rise to
a sub-dialogue involving fetching the hotel data from the web site,
uttering periodic pacifier utterances if the fetch turns out to be
lengthy, and finally offering the hotels sequentially for the user
to choose from.

The path of nodes from the root of the dialogue model tree is
called the frontier path, and is held on the agenda stack. The
frontier path gradually moves to the right as the dialogue
progresses. A separate pass through the tree, the action
restoration pass, scans the completed portion of the tree to the
left of the frontier path. If an action in this portion of the tree is
found to be suitable for execution in the current dialogue state, it
is restored and pushed onto the agenda stack. This may happen
if the dialogue state changes so that the action’s achievement
condition is no longer true, or if its relevancy or executability
condition has become true when it was not before.

The WHILE control structure node enforces a relevancy
condition for a whole sub-tree. While a WHILE node is
executing, the system checks whether its condition is still true
each time the dialogue state changes. If at any time the condition
ceases to be true, the entire sub-tree below the WHILE node is
terminated. To take the hotel reservation example of the
introduction, if the user says “Forget it. I don’t want a hotel”, the
whole hotel sub-dialogue is aborted, regardless of whether it is
querying the hotel database or negotiating a reservation with the
user.

The WHENEVER node plays a complementary role. During the
restoration pass of the completed portion of the dialogue tree, if
a WHENEVER node is found whose condition is true, that node
and the whole sub-tree below it are restored and pushed onto the
stack. This facility allows the system to restore previously
completed sub-dialogues that have to be done over because of a
change in dialogue state. Partial restoration of sub-dialogues is
also possible. When the sub-dialogue is restored, if there are
actions in the sub-dialogue whose achievement conditions are still
met, they will not be executed. Thus, if the user decides to
change the date of a booked flight, only the the data fetching and
reservation negotiation pieces will be re-executed.

The WHENEVER node is also used to deal with general
situations that may occur at any time during the dialogue, such as
handling a conflict between the user’s constraints, or explicitly
confirming a user utterance that the system is not sure about.
These special nodes are placed as the leftmost children of the
root node, so that they will always be checked first in a
restoration pass and given priority.

5. INITIAL EVALUATION

Talk’n’Travel participated in a common evaluation under the
Communicator program. The dialogue manager component used
embodied an earlier version of these ideas that included the
dialogue control scheme presented here but not the event-driven
control or barge-in.

The evaluation was conducted by the National Institute of
Standards and Technology (NIST) in June and July of 2000, and
included systems fielded by 9 different groups (ATT, BBN,
CMU, Lucent, MIT, MITRE, SRI, and University of Colorado).
A pool of approximately 80 subjects was recruited from around
the United States. The only requirements were that the subjects
be native speakers of American English and have Internet access.
Only wireline or home cordless phones were allowed.

The subjects were given a set of travel planning scenarios to
attempt. Each subject called each system once and attempted to
work through a single scenario; the design of the experiment
attempted to balance the distributions of scenarios and users
across the systems.

Following each scenario attempt, subjects filled out a
questionnaire to determine whether subjects thought they had
completed their task, how satisfied they were with using the
system, and so forth. The overall form of this evaluation was
thus similar to that conducted under the ARISE program [4].
The table shows the results for Talk’n’Travel:

Talk’n’Travel’s score of 80.5% was the highest of all
participating systems, and ranked second on overall user
satisfaction.

6. CONCLUSION

This paper described our strategy for event-driven dialogue
management, and our tree-ordered rule language for dialogue
control. The language is flexible, general, and extensible. We feel
that the work described here can lead to more sophisticated and
capable dialogue management systems in the future.

7. REFERENCE

[1] Stallard, D. (2000) Talk’n’Travel: A Conversational System
for Air Travel Planning. In

[2] MITRE (1999) DARPA Communicator homepage
http://fofoca.mitre.org/

[3] Ward W., and Pellom, B. (1999) The CU Communicator
System. In 1999 IEEE Workshop on Automatic Speech
Recognition and Understanding, Keystone, Colorado.

[4] Den Os, E, Boves, L., Lamel, L, and Baggia, P. (1999)
Overview of the ARISE Project. Proceedings of
Eurospeech, 1999, Vol 4, pp. 1527-1530.

[5] Miller S. (1998) The Generative Extraction Model.

Unpublished manuscript.

[6] Constantinides P., Hansma S., Tchou C. and Rudnicky, A.
(1999) A schema-based approach to dialog control.
Proceedings of ICSLP, Paper 637.

[7] Rudnicky A., Thayer, E., Constantinides P., Tchou C.,
Shern, R., Lenzo K., Xu W., Oh A. (1999) Creating

Q1 It was easy to get the information I wanted

Q2 I found it easy to understand what the system said

Q3 I knew what I could do or say at each point in the dialog

Q4 The system worked the way I expected it to

Q5 I would use this system regularly to get travel information

Comp% Q1 Q2 Q3 Q4 Q5

BBN 80.5% 2.23 2.09 2.10 2.36 2.84

Mean 62.0% 2.88 2.23 2.54 2.95 3.36

Task

Scale: 1 = strongly agree, 5 = strongly disagree

natural dialogs in the Carnegie Mellon Communicator
system. Proceedings of Eurospeech, 1999, Vol 4, pp.
1531-1534

[8] Rudnicky A., and Xu W. (1999) An agenda-based dialog
management architecture for soken language systems. In
1999 IEEE Workshop on Automatic Speech Recognition and
Understanding, Keystone, Colorado.

[9] Seneff S., and Polifroni, J. (2000) Dialogue Management in
the Mercury Flight Reservation System. ANLP
Conversational Systems Workshop.

[10] Boyer,L,et al (2000) Voice extensible Markup Language
Version 1.0. Web: http://www.w3.org/TR/2000/NOTE-
voicexml-20000505/

8. ACKNOWLEDGEMENTS

This work was sponsored by DARPA and monitored by
SPAWAR Systems Center under Contract No. N66001-99-D-
8615. The author would like to thank Daniel Kiecza and Francis
Kubala for their help with telephony and speech recognition and
their colloboration on event-driven communication.

