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ABSTRACT Most of the progress on LMs was made on large vo-
cabulary dictation tasks (often referred to as Large Vocabu-

In this paper we want to show how-gram language mod- v continuous Speech Recognition, LVCSR) such as the
els can be used to provide additional information in auto-é\/
r

) . all Street Journal corpus [3] where read speech, which is
matic speech understanding systems beyond the pure wor

hain. This b i i th ¢ ammatically correct, has to be recognized. In this case,
chain. This becomes important in the context of conversa-,, 4 ndance of written texts is available for training and

tional dialogue systems that have to recognize and interpret[he result does not have to be analyzed syntactically and se-
spontaneous speech. We show hewgrams can (1) help mantically. Thus it is possible to optimize the recognizer to

to classify prosodic events I_ike boundarie_s and accents, (Z¥ind the word chain that matches best to the spoken word
be extended to directly provide boundary information in the sequence, disregarding punctuation, bold faces, and para-
speech recognition phase, (3) help to process speech repaira,raphs ’ ’ '

and (4) detect and semantically classify out—of—vocabulary

. Things become a little bit different, when one looks at
words. The approaches can work on the best word chain or a : .
so called conversational dialogue systems, e.g. systems that

word hypotheses graph. Examples and experimental result?]ave to recognizandunderstand spontaneous speech. The

are provided from our own research within th&aR in- . :
X X speech recognizeris now only one module in a larger system
formation retrieval and the BRBMOBIL speech—to—speech . . ' i
. and its output is no longer the final result but the input to
translation system. ; . . '
further processing stages. Figure 1 depicts the architecture
of our EVAR train timetable system [4], which is a standard
1. INTRODUCTION architecture for an information retrieval dialogue system.
Based on the user utterances word recognition is per-
In this paper we want to show how stochastiegram lan-  formed and the best word chain (e.f.would like to go
guage models can be used to provide additional informationto Frankfurt®), or alternatively a word hypotheses graph
in automatic speech understanding (ASU) systems beyondWHG), is handed on to the linguistic processor. The lin-
the pure word chain. The best word chari in practically guistic processor extracts a set of semantic concepts (se-
all speech recognizers is the result of the fundamental for-mantic attribute—value pairs) from the word recognizer re-

mula of speech recognition, the Bayes’ Formula sult (e.g.[goalcity:frankfurt] ) and forwards them
to the dialogue manager. The dialogue manager checks
w* = argglaX{P(Olw) - P(w)} whether all necessary parameters are available and, if so,

sends a query to the application database. Depending on

whereO stands for the acoustic input. The computation of the dialogue history and the current dialogue strategy, the
P(O|w) is referred to as the acoustic model and the esti- User is asked to confirm the parameter (€ou want to
mation of P(w) as the language model (LM) [1, 2]. go to Frankfurt?”) and/or another parameter is requested
(e.g. “At what time would you like to leave?; otherwise

“This work was funded by the German Federal Ministry of Educa- the resylt of the database search is verbalized. The gener-
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search Foundation) under contract number 810 939-9. The responsibility Normally, the word chain contains no additional infor-

for the content lies with the authors. . . . .
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Recognizer Parser

ments of its words (of course — in rare cases — a fragment

— o ; .
{pmsc'i‘s”:'ng ﬂ-’{ pronetc }L{ P ﬂ can happen to be a lexical entry; this can happen more of-
T ten in languages like German where word compounds are
\{ Sposch- ]}*{Responw}]‘_{ Dialogue- ]]A ql_Jite f_rgquent). The OQV pr_o_blem severely impairs the ap-
synthesis generation control_Jj~_ |patabase plicability of speech recognition technology to many real—
Pialogue Manager world tasks. The OOV word problem has been looked at in

LVCSR, because an increase of approximately 1.5-2.5 er-
rors per OOV word has been observed by several authors
(see for instance [6, 7, 8]). Including an explicit OOV word
as a lexical entry can reduce these additional errors. In an
ASU system, however, it is not only important to reduce the
recognition errors, but to know the semantic category of the
OQV word, in order to react appropriately. For instance in
he EVAR domain (and assuming that names of persons and
he desired city are not in the lexicon) the user utterance

“Hello, my name is Schultz, | want to go to Rossau”
can easier be processed, if the recognizer provides as the
best word chain

“Hello, my name is OOV-last—-name, | want to go

to OOV—city”
rather than

“Hello, my name is OOV, | want to go to OOV”

Fig. 1. The basic architecture oM&R

information may be important. Consider, for example, the
following user utterances:

U1: “Of course not on Monday.”

U2: “Of course not. On Monday!”
The question whether a phrase boundary occurred after th
word “not” is of considerable importance for the semantic
interpretation of the word sequen@d# course not on Mon-
day”, and for determining the next system utterance. For
example, either of the following two utterances may be ap-
propriate:

S1: “What day would you like to travel?”

S2: “You would like to travel on Monday?”
Selecting the wrong responsg81(for U2, or S2 for Ul) ) )
will most certainly annoy the caller and will probably make " this paper we want to deal with these three ad-
her/him hang up. It might be argued that the correct inter- ditional information sources that can enrich the word
pretation of the word sequence could also be determinedchain: i-. prosodic, repair, and OOV information. Adding
without prosodic information, if the dialogue history is this information to the interface between recognition and
taken into account. Depending on the previous system ut_llngmsnc analysis can significantly improve the results
terance, at least one of the two above interpretations could®f the overall system.  We want to concentrate on the use
be declared illogical. This, however, involves a consid- °f LMS to achieve these tasks. We report on four aspects
erable amount of higher—level knowledge and ‘intelligent Of 0Ur own use ofi—grams within the EAR system and
processing, whereas prosodic information in the speech sig—the VERBMOBIL speech-to-speech translation system
nal can directly resolve the ambiguity [5, Sec. 8.4]. Fur- [9. 10, 11J:
thermore, there is no reason to ignore information that may
without any doubt contribute to finding the correct seman-
tic interpretation, even if a sufficiently intelligent dialogue
module is available.

Other frequent spontaneous speech phenomena which

1. Classification of prosodic events in a WHG

2. Integrated recognition of words and phrase boundaries
3. Processing of speech repairs

4. Detection and semantic classification of OOV words

cause severe problems to speech recognizerdiafe- The rest of the paper is organized as follows: Section 2
encies such asself-repairs false starts andrepetitions ~ outlines the various types of prosodic phenomena which
These are in some cases accompaniedsint or filled have been recognized and classified with the use of LMs.

pauses such asuh's andums. Disfluencies constitute a The annotation scheme is described. Section 3 introduces

problem for the parsing of spontaneous speech: they shouldasic concepts of category based stochastic language mod-
not be processed as such but rather disregarded: in the ut€ls and how they can be applied to classification tasks. In

terance Section 4 classification of prosodic events and integrated
“yes it's ok Mon uh Sunday the fourth” recognition of words and phrase boundaries is introduced.
the result of syntactic analysis should rather be The processing of speech repairs is described in Section 5

and the processing of OOV words in Section 6. Finally,

“yes it's ok Sunday the fourth” , : .
conclusions and suggestions for future work are given.

Disfluencies and particularly self—repairs like in the last ex-
ample often involveword fragmentswhich are by defini-
tion out—of-vocabulary (OOV) words.e. words that are 2. PHENOMENA AND ANNOTATION

not part of the predefined recognition vocabulary, because a

word may be cut off mid—word, or even mid—syllable, and In this paper, we want to deal with the following two
the recognition lexicon cannot contain all the word frag- prosodic phenomena, for which we give examples taken



from the VERBMOBIL scenario (appointment scheduling):

in order to favor continuing the ongoing syntactic analysis
rather than assuming that a sentence equivalent ended and

Boundaries: a new analysis has to be started. Depending on — among
“Funfter geht bei mir, nicht aber neunzehnter.” VS. other things — the speaker style, the speaker is sometimes
“Flnfter geht bei mir nicht, aber neunzehnter.” ie. inconsistent with his/her prosodic marking. In the example

“The fifth is possible for me, but not the nineteenthvs.

“The fifth is not possible for me, but the nineteenth
would be OK?”

above, the intermediate boundary betw&&mesday” and
“the twenty third” is clearly audible, whereas there is no
audible boundary betweefThursday” and “the twenty
fifth”. Syntactic phrasing is — besides by the prosodic

Accentuation: marking — also indicated by word order. We recognize
“Ich fahre doch am Montag nach Hamburg.” Vs. these acoustic—prosodic boundaries with classifiers (neural
“Ich fahre DOCH am Montag nach Hamburg.” I.e. networks) based on acoustic—prosodic features [13, 10].
“I' will go on Monday to Hamburg. vs. We want to recognize the different linguistic levels of

“I will go on Monday to Hamburg after all”

These are minimal pairs, which demonstrate that lin-
guistic_ analysis is supported by. prosodic markings (and Syntactic—prosodic Boundaries
sometimes can onl)_/ be done with the help of prosody_). For the LM training we have the demand for large train-
Unfortunately there is no one—to—one mapping of prosodic iy yatapases. The marking of perceptual labels is very
classes and linguistic structure (luckily the correspondencetime consuming, since it requires listening to the signal.

is nevertheless very high [12]). We therefore developed a rough syntactic—prosodic labeling
scheme, which is based purely on the orthographic translit-
eration of the signal, the so callé&d system. The scheme

is described in detail in [12]. It classifies each turn of a
spontaneous speech dialogue in isolation, i.e. does not take
context (dialogue history) into account. Each word is classi-
fied into one of 25 classes in a rough syntactic analysis. For
the purpose of the paper, it suffices to look at two different
mappings into major classes:

boundaries with LMs which look at the word order.

2.1. Boundaries

Consider the following excerpt from a realE¥BMO-
BIL turn (translated into English), where

<A> stands for breathing,

w<L> forunusual lengthening of wond,

<P> for a pause,

Bi for an acoustic—prosodic boundary
D3 for a dialogue act boundary, and 1. M3: clause boundary (between main clauses, subor-
M3 for a syntactically motivated boundary: dinate clauses, elliptic clauses, etd)Q: no clause

(see below for details w.r.t. the boundary classes) boundary;
“... M3 D3 well then I'm not present at allB3 M3 D3
<A> and in the<L> B9 <P> thirty fourth week B3 M3
<P> <A> that would beB3 <P> TuesdayB2 the twenty

third B3 <A> and Thursday the twenty fiftM3 D3 <P>

2. SO: no boundaryS1: at particles,S2: at phrases,
S3: at clauses,S4: at main clauses and at free
phrases.

Acoustic—prosodic Boundaries Dialogue Act Boundaries

Clearly, a classifier which segments this turn based only Even less labeling effort and formal linguistic training is re-
on acoustic prosodic information, like length of a pause quired if we label the word boundaries according to whether
between words, might give the linguistic analysis bound- they mark the end of a pragmatic unit. We refer to these
aries which hinder rather than help (like the boundary poundaries as dialogue act boundaries. Dialogue acts are
betweenfin the” and“thirty” ). We distinguish therefore  defined based on their illocutionary force, i.e. their commu-
betweenBO: normal word boundaryB2: intermediate  njcative intention, cf. [14]. Dialogue acts are e.g. ‘greeting’,
phrase boundary with weak intonational markigg: full ‘confirmation’, and ‘suggestion’; a definition of dialogue
boundary with strong intonational marking, often with acts in VERBMOBIL is given in [15], [16]. In parallel to the
lengtheningB9: ‘agrammatical’ boundary, e.g., hesitation B andM labels, we distinguish betwedd3: dialogue act

or repair. Thus we can dlStIthISh between pI’OSOdiC boundary, andO0: no dia'ogue act boundary_
boundaries which correspond to the syntactic structure and

others which contradict the syntactic structure. However we
still have the problem that syntactic boundaries do not have
to be marked prosodically. A detailed syntactic analysis We distinguish between four different types of syllable
would rather have syntactic boundaries irrespective of theirbased phrase accent labels which can easily be mapped onto
prosodic marking, e.g., it needs to know ab8% and B0 word based labels denoting if a word is accented or not:

2.2. Phrase Accents



PA: primary accentSA: secondary accenEC: emphatic zero. As a consequence, the raw ML estimates have to be
or contrastive accen$§0: any other syllable (notlabeled ex- smoothed; non—zero probabilities have to be assigned-to
plicitly). Since the number d?A, SA, EC labelsis notlarge  seenword sequences, and thatobability masshas to be
enough to distinguish between them automatically, we only taken from non-zero ML estimates. There are two basic
ran experiments trying to classify ‘accented worA3(= strategies that are employed for this purpoBacking—off
{PA, SA, EC}) vs. ‘not accented word’A0). In the VERB- approaches [18] andterpolationstrategy schemes [19].
MoOBIL domain, the number of emphatic or contrastive ac-

cents is not very large. In information retrieval dialogues 3.1. Category basech—Grams

this could easily change, if there is a large number of mis-

understandings and corrections. Again, these are the basi§Vhere for LVCSR huge amounts of written text are often
for our ‘acoustic model’. For the LM, we developed a rule— available, the training data for ASU systems have to be
based system which — starting with th boundaries — transcribed from recorded dialogues. This is a very expen-
predicts for each word between two boundaries, whethersive task. For instance, the EVAR training set and cross—
it carries the phrase accent, based on the part—of-speechglidation set together contain only about 60,000 words

(POS) sequence in the syntactic phrase. The system is de(2,300 different). The number of parametersningram
scribed in [17]. models can be drastically reducedwbrd categorieqor

word classesare introduced. These can be based on syn-
tactic, semantic, and pragmatic knowledge, or they can be
determined automatically with the use of clustering algo-
rithms. Here, only categorie = {2, 2,,...,Zp} are
considered that do not overlap and build a partition of the
vocabularyW, that is, each word sequenae= wy ... w,,
corresponds to a unique sequence of word categeries

21 ...2m, 2; € Z. The probability of observing a word se-

3. N-GRAM LANGUAGE MODELS

In this section, the problem of estimating stochastic lan-
guage model® (w) for sentences = w; . . . w,, of words

w; from a finite vocabularyV is addressed. The joint dis-
tribution P(w) can be decomposed by the chain rule

m quencew can then be denoted as
P(w) = P(w)[]Pwilwi™) m
2 P(w) ~ P(z1)P(wi | z1) [[ P(zi | 20250 Plwi | 2)
= P(w) []Pw; |wy...wi1) =2
i=2 Any type of n—gram can be used to model the proba-

bilities of category sequences. Additionally, the conditional
probability for a symbol given a category has to be esti-
mated. This is usually done according to the relative fre-
quency of the words belonging to each category, or with the
same smoothing techniques as for word based models.

into a product of conditional word probabilities. Anr-gram
language modék obtained if only sub—sequences of length
n (n—gramg are taken into account, that is, the history is
restricted tor — 1 words:

m ’ The use of word categories can significantly improve
P(w) ~ P(w;) H P(w;|wiZ} ) the robustness of language model training. Manually con-
=2 structed word categories, however, have to be carefully se-

lected (consider, for example, a single category ‘number’
for the train timetable information domain; because of dif-
ferent ranges for hours and minutes, this might be a bad

The straightforward approach is to replace the conditional
n—gram probabilities by their maximum likelihood esti-

mates S ) choice [20]).
Pwijlwi™}, ) = ———* We build a category system that contains the following
#(Wini1) word categories:

where the functiogt(-) gives the frequency of occurrences
of its argument in the training text. Typical valuesroin
speech recognition applications are= 2 (bigram) andn =

3 (trigram).

Unfortunately, the frequency ratios are far from being
reliable probability estimates, even in the case of small val-
ues forn. In particular,ﬁ(wﬂwjjwl) degenerates to zero
if the n—gramwﬁ,nJr1 was never observed in the training e a category of its own for each sufficiently frequent
data. An even larger problem arises as soon as the denom- word which is not included in one of the manually
inator#(wﬁ:lH) of the ML estimate expression turns to designed word categories, and

¢ all relevant predefined word categories, i.e. word cat-
egories which contain words that are sufficiently fre-
quent in the training data. As indicated above, this is
very application dependent. Example categories are
‘first name’, ‘last name’, ‘city name’, ‘region’, ‘day
of week’, and ‘month’;



e asingle word category for all remaining words which resolutions § vs. M vs. D) [9] and since classification er-
are notincluded in one of the manually designed word rors have different effects depending on whether a prosodic
categories. eventis not found (miss) or its complement is wrongly clas-

sified as a prosodic event (false alarm), we pass on acous-

tic based and word sequence based classification separately

(note that in a previous version of our prosody module we

Letw; again be a word out of a vocabulary wheémenotes  combined the acoustic and word sequence based classifi-

the position in the utterance (the approach works as well, if cation [13]). In Tables 1 and 2 we present the recall, i.e.,

w; denotes a category); denotes a symbol out of a prede- correct/(correct + miss), for defined classes. Precision,

fined set) of prosodic symbols. These can be for example j.e., correct/(correct + false alarm) can be computed

{M3, MO0}, {A3, A0}, or a combination of botd MOAO, from the numbers provided. The results are achieved on

MOA3, M3A0, M3A3} depending on the specific classifi- the basis of the spoken word chain, i.e. simulating a perfect

cation task. For example; =M3 means that thé" word word recognizer.

in an utterance is succeeded by a clause boundary.

3.2. Classification with Language Models

Classification is done with the Bayes’ Rule by comput- set M3 MO A3 AO | D3 DO
ing the posterior probability for the occurrence of a prosodic #1train | 27k 126k| 103k 174k| 15k 99k
symbolV; € V, given a string where words and prosodic la- # test 5k 24k 3k 5k | Bk 26k
bels alternate: recall | 86 97| 87 92] 80 96

#train| 16k 53k - - - -

P(v; = Vi|wivy ... Wi 10; 1 WiWi11Vig 1 - -« WiV, #test | 2k 6k _ _ _ _
B P(wyvy ... wi— 10 w; Viwir1Vig1 -« Wiy Upy) recall 33 94 _ — _ _
ZVi ey P(wiv1 ... wi—1 Vi1 W; ViWig 10541 - - - Wiy Upy) # train - — - — | 14k 94k

# test - - - - 1k 8k

According to the last equation we need to model the follow- recall — — _ —1 92 99

ing a priori probability:

Table 1. LM classification: Recall in percent for syntactic—
prosodic boundaridsl, rule—based accenfs and dialogue

act boundarieB in the three languages of thee¥BMOBIL
system: German (G), English (E) and Japanese (J); number
of cases is given for train and test

P(wviwavs .« . . Wi Uny)

When determining the appropriate laB&lto substitutey;,
the labels at positions;_;, andv; are not knowng =

1,2,...). To simplify the computation, we approximate

P(wiviwavs - . . WU &

reference recognized
P(Wi—n42 -« Wim2 Wi 1 WiV Wi 11 Wit2 - - - Witn—2) Gorman
and represent the distribution by-grams which are esti- label # | SO S1 S2 S3 sS4
mated on strings of words and prosodic symbols. SO 24286| 89 2 S 2 2
If one wants to classify; in a WHG instead of a word S1 1408 8 81 4 2 5
chain, the exact solution would be a weighted sum of all S2 1014|155 3 69 3 10
probabilitiesP,, computed on the basis of all the possible S3 622 8 2 5 73 12
contexts, i.e. all possible paths through However, this S4 3640 4 5 6 6 79
does not seem to be feasible under real-time constraints. English
Instead we classify; based on the locally best path through label # SO S1 S2 S3 4
w; by looking atn — 2 predecessors and successors of S0 5771| 89 1 6 2 2
S1 169 7 64 17 0 12
4. CLASSIFICATION OF ACCENTS AND S2 900 5 3 8 2 8
BOUNDARIES WITH LMS S3 145 7 1 7 71 14
S4 1066| 3 8 9 3 76

We have defined the classes (Section 2) and a classifier
(Section 3.2). The classifier looks at the word sequence
and not at the acoustic evidence. Classification with neu-

ral networks based on acoustic evidence is described inintegrated Recognition of Words and Boundaries
The approach just presented has the disadvantage that
MOBIL use our classification results and look at different knowledge about the position of phrase boundaries cannot

[10, 13]. As differentunderstanding modulesh VERB-

Table 2. Recall in percent for the fiv8 classes



be used for determining the spoken word sequence. As
has been pointed out by other authors [21, 22], information
about the syntactic structure of an utterance can improve
the word recognition result. Taking a look at ouERB-
MOBIL test database with respect to the occurrence of un-
seen word pairs, we found that of all pairs of neighboring
words which arewithin phrases that are delimited B3
phrase boundaries, only 14% have never been observed in
the training sample. The same ratio for word paicsoss

phrase boundaries is 38%. Any standardjram language ) )
Table 4 shows the results for the baseline and the in-

model will provide lower probabilities for word transitions . .
that have not been observed in the training data. Thatis, lan{€9rated word—and-boundary recognizer. There is a small

guage model probabilities across phrase boundarieyare improvement in word error rate and part of the syntactic

tematically underestimateily word—based language mod- structure of the utterance is recognized ‘for free’, i.e. the
els. interface to the understanding module contains more infor-

In our integrated approach for word—and—boundary mation with no computational overhead (in fact the compu-

recognition, utterances are not modeled as unstructured set@tion is slightly faster). The approach is described in detail

quences of words, as in traditional word recognizers, but as" [20: 23]- There ahybrid recognizer that also uses acoustic
sequences of words and boundaries. Both words and boundPoundary evidence is described as well. _
aries are therefore integrated in a single language model,_ 1€ results are not comparable to the ones presented in

Furthermore, suitable HMMs have to be provided for phrase 1@Pe 1, because those were achieved on the basis of the
boundaries. We developed the LMs on the basis of the SPoken word chain. When using the output of the baseline

MO/M3 classes. It is worth noting that 59% of tha3 word recognizer instead of the spoken word chain, preci-

boundaries are marked by a pause or a non-verbal soundion and recall for thé13 andMO classes are practically
and that 67% of all pauses and non—verbals coincide withidentical for the sequential and the integrated approach.

an M3 boundary ([20]). We thus have to provide HMMs
to modelM3 boundaries with and without pauses and non—

word category M3

e non-boundary models for pauses and non-verbal
phenomena are treated as random events that do not
depend on the surrounding word context. They are
ignored, when the probability of the following word
is calculated.

In Figure 2, the integrated word—and—boundary lan-
guage model is illustrated with an example utterance.

| system | WER | recall | prec. | RTF |

verbals and HMMs to model pauses and non—verbals with- | baseline wordrec] 23.8% | — — | 41
outM3 boundary. For phrase boundaries that do not coin- | integrated word—\ ., g1 | 74 505 | 75.796| 4.0
cide with a filled pause or a non—verbal, we use a one—statel and—boundary rec,

HMM that always consumes a single time frame. Table 3

shows the complete inventory of boundary HMMs together Table 4. Word error rates (WER), recall and precision rates
with their non—boundary equivalents. for M3 phrase boundaries, and real time factor (RTF) on the

VERBMOBIL test sample

M3 boundary | non-boundary # HMM
model equivalent states
[[mg]] (”C[”]‘e) é 5. REPAIRS
[—M3—] [—] 9 In the German part of the 8RBMOBIL corpus, 21% of all
[MSE“m] [um] 9 turns contain at least one repair. Most of them (82%) are
[MS-NV]_ [NV]_ 9 so called modification repairs and we therefore concentrate
[M3:breathing] | [breathing] 9 on this type of repairs (for a detailed analysis of the differ-

ent kinds of repairs see [24]). Modification repairs correct
part of the whole sentence, but do not change the syntac-
tic construction. We define repetitions as a special case of
modification repairs, where the corrected part and the cor-
rection are identical. Commonly each repair is segmented
in the four partgeparandumRD), editing term(ET), inter-
ruption point(IP), andreparans(RS); an example is given

in Figure 3:

Table 3. The inventory of boundary HMMs and their non—
boundary equivalents. The HMM training for all these mod-
els is performed in a partially unsupervised manner as de-
scribed in [20]

The integrated language model for words and phrase
boundaries is a regular-gram model which is constructed
as follows:

e M3 boundary models are treated like words  RD: the ‘wrong’ part of the utterance

¢ all M3 boundaries are included in a single, additional ¢ |P: boundary marker at the end of the RD



Pyegin (Okay) P(Tuesday | M3) P(—) l P(o’clock | eleven) P.,a(M3)

[ a a a

okay [-M3-] Tuesday at [—] eleven o’clock [M3]
Pus([-M3-]) - P(M3 | okay) P(at | Tuesday) Pus([M3]) - P(M3 | o’clock)

P(eleven | at)

Fig. 2. The integrated word—and—boundary language model (in the case of a bigram—based recognizer) illustrated with the
example utteranc®kay — Tuesday at — eleven o’clockthe dashes indicate silent pauses). The correct sequence of word
and boundary models and the corresponding bigram probabilities are given in the figutd3 Aundary models (e.g.

[-M3-] for a boundary which is marked by a silent pause B8], which consumes only one time frame) are in a single
language model categol3; the category—dependent emission probabilitiedf8models are denoteBy;s(-).

e ET: special phrases, which indicate a repair like with syntactic boundaries or they can be ‘agrammatical’.

“well” , “I mean” or filled pauses such dshm”, On the other hand, hesitations can B@ boundaries and
“uh” (optional, most of the time missing) yet do not necessarily mark repairs. A classification of
) a subsample of the 5RBmMOBIL database with neural
* RS: the correction of the RD networks and 559 IPs vs. 51,486 ‘normal’ word boundaries
(i.e., a relation of 1:100") yielded the results shown in
jaist in OrdnungMontag « <&h> Sonntag den fiinften Table 5.
yes it's okay Monday® <uh> Sunday the fifth
~ Segmentation
/ / \ \ Repair processing is seen as a statistical machine translation
) . (SMT) problem [26] where the RD is a translation of the RS.
Reparandum Interruption- Editing  Reparans
point Term The SMT approach assumes that a speaker who produces
the source sentenc¢goriginally wants to produce the target
Fig. 3. A repair example sentencd’. Transferring this approach to repair processing,

the source sentence is represented byitfeand the target
sentence is equivalent to tHeS. SMT defines a scoring

Modification repairs have a strong CorreSpondencefunction for a pair(S,T') which can be adopted for repair

between RD and RS. We can measure this in terms of . . )
length of RD and RS and POS replacements. For almost allProcessing without further changes:
POS categories, the speakers prefer to modify a word in the

RD with a word which belongs to the same POS category P(RD|RS) = ZP(RD’ al 12S)

in the RS. Thus there is no need for a complete syntactic ¢

analysis to detect and correct most modification repairsa is the alignment, which describes the link between
even if repairs are characterized by violation of syntactic words in RD and RS. The probabilities are estimated
and semantic well-formedness [25]. We implemented awith a linear interpolation oh—grams for the words, the
statistical approach as a filter process between the speecborresponding POS tags, and the semantic classes. Details
recognition engine and the syntactic parser. Starting with are given in [24, 27].

the WHG produced by the word recognizer, a prosodic

module detects possible IPs. For each of these IPs, dntegration into the VERBMOBIL System

stochastic model tries to find an appropriate repair by The repair module is integrated in theeERBMOBIL system

guessing the most probable segmentation. on top of the prosodically annotated WHG from the rec-
ognizer. For each path through the WHG that contains an
Detection of Interruption Points IP hypothesis, all possible segmentations, i.e., all possible

The prosodic module classifies each word boundary in (RD, RS) pairs, must be scored. In practice we reduce this
the WHG as a regular or an irregular boundary. Irregular setto pairs, wher&D andRS are at most four words long,
boundaries are seen as hypotheses for IPs (details are givebecause we found that this restriction holds for 96% of all
in [10]). Note that IPs are a mixture &d2/B3 and B9 repairs in the \ERBMOBIL corpus. ETs are characterized
boundaries (Section 2.1), since they can either coincideby a closed list of short phrases. Thus if after an IP such a



phrase is found, it is skipped to build th&D, RS) pair. We believe that modeling modification repairs as a

If the score of a pair is above a heuristic threshold, the pair translation process is an promising approach to repair pro-
is accepted as a repair and an alternative path is inserteadessing. The formal description in terms of statistical ma-

in the WHG. The resulting WHG is finally analyzed by a chine translation opens a great variety for further model im-
stochastic parser, which selects according to its model theprovements. The main unsolved problems are word frag-
best scored path and therefore can accept or reject the repaiments and fresh starts.

detection correct RS 6. DETECTION AND CLASSIFICATION OF OOV
recall | prec. | recall | prec. WORDS
prosodic classifief 90% | 3% — — _
repairs without In [28] we presented an approach for the detection of OOV
word fragments 48% | 77% | 47% | 76% words which implicitly provides information on the word
repairs including category. This involves the integration of both detection
word fragments 70% | 86% | 61% | 84% and classification of OOV words directly into the recogni-
tion process of an HMM-based word recognizer. With our
Table 5. Results for repair processing approach, acoustic information as well as language model
information can be used for the purpose of classifying OOV
Discussion of the Results words into different word categories. Currently the same

Table 5 shows the results of the repair process with the as-2coustic models are used for all OOV words; only language
sumption that we have a perfect recognizer that producegfodel information contributes to the assignment of a cate-
no word errors and marks every word fragment. The ‘detec- 9Oy to each.
tion’ column shows the results for the repair identification ~ The basic idea behind our approach is to build language
task. The ‘correct RS’ column presents the same numbergnodels for the recognition of OOV words that are based on a
for the correct segmentation. A segmentation is defined assystem of word categories. Emission probabilities of OOV
‘correct’ if RD and ET are identified. In some cases within words are then estimated for each word category. Even if
complex repairs (repairs within repairs), RD and ET are not We include in our vocabulary all words of a category that
identified correctly but, if these segments are removed fromWwere observed in the training sample, there is still a cer-
the input, the resulting string is the intended word sequence tain probability of observing other new words of the same
One major problem in handling self repairs are word category in an independent test sample or in future utter-
fragments. They occur often at the end of the RD and con-ances. This probability can be estimated from the training
stitute an important repair signal. But current state of the sample itself. Details on the calculation of the OOV emis-
art speech recognizer cannot detect word fragments. So angion probabilities were given in [28]; an improved version
analysis based on word fragment information does not re-of the algorithm can be found in [20]. Figure 4 shows the
flect the performance in a real speech system. Thus, we perprinciple of this estimation technique for the categoity
form two tests: One with word fragment information and ©f the EVAR sample.
one where we exclude turns with fragments. For most of our linguistically motivated word cate-
The first row in this table shows the results for prosodic gories, the OOV probability is 0, because they describe a
IP detection. One can see the problem of a solely prosodyfinite set of words. In the time table inquiry domain there
based repair detection. The neural network recognizes 90are 5 word categories that are practically infinite (eity,
percent of all repairs, but produces a lot of false alarms asregion, last namg In addition, a category for rare words
indicated by the bad precision. The reason is not a worsehas been defined that do not fall under any other category
classifier but a principle problem. At first the event IP is (OOV probability 73%) and another for garbage (e.g. word
very rare in contrast to the event ‘no interruption’, which is fragments, OOV probability 100%).
a bad precondition for a two class classifier. And secondly,  After integrating OOV probabilities into the language
the prosodic features that are used to mark the IP can bemodel, the latter has to be combined with one or several
observed in many situations that constitute no repair. acoustic models for OOV words. Simple ‘flat’ acoustic
But as can be seen in the following rows the repair models can be used for this purpose as well as more en-
search process can eliminate many of those false alarmshanced models based on phone— or syllable—grammars.
When we count only turns without fragments, we detectand  The results for the ¥rRBMOBIL domain are summa-
correct almost half of the repairs. The last row shows the rized in Table 6. The total number of OOV words in the
strong impact of fragments to repair processing. By using test sample was 132, i.e. an OOV rate of 2.8%. At the first
fragment information recall and precision of detection and glance, the overall recall and precision rates for OOV words
correction increase. of 28% and 32% are rather disappointing. Interestingly,



a(i)

80t

601

401

201

0 500 1000 1500 2000 2500 3000 3500

Fig. 4. Estimation of the current OOV word probability
for word categorycity. The functiong gives the number

of words in categorgity up to theith word of the training
sample that would have been OOV if we had redefined the
vocabulary after each observed word. The slope of the lin-
ear approximation is an estimation of the OOV probability
of categorycity

however, the word error rate after including OOV words

| system | baseline] OOV-extended
WER 22.5% 22.1%
RTF 3.8 3.9
recall 0% 28%
total
precision _ 32%
total
recall 0% 35%
LAST_NAMES
precision _ 68%
LAST_NAMES

Table 6. Evaluation of the OOV-extended recognizer for
the VERBMOBIL domain. The recall and precision rates are
given for all OOV words (recall total and precision total)
and for OOV words from word categOnAST_NAMES (re-
call LAST_NAMES and preciSionAST_NAMES)

rate category for word fragments of weekda$yeé it's ok
Mon”) would exist. Another important research area which
has not been mentioned in this paper so far is the classi-
fication of differentemotions e.g. anger, anduser states

drops from 22.5%10 22.1%. Thisis due to the factthat OOV e.g. helplessnessEmotions and user states are expressed
false alarms occur mainly at those parts of utterances whereyy prosodic, lexical, syntactic/semantic, and illocutionary
word recognition errors would also have occurred without means [29]. At least some of these means can be modeled
OOV models in the vocabulary. These results are comparawith n—grams. In the near future, we plan to evaluate, if the

ble to those achieved in [8].

7. CONCLUSION AND OUTLOOK

In the field of speech recognition, stochastigrams are
widely used for the estimation of the probability of word
strings. Their success is mainly due to an unique combi-
nation of favorable featuresi-grams can be estimated eas-
ily from transcribed speech or text data and their structure

integration of the information sources provided by all mod-
ules described in this paper can improve the current perfor-
mance on this task.
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