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ABSTRACT

This paper gives an overview of our work on statistical
machine translation of spoken dialogues, in particular in
the framework of theVERBMOBIL project. The goal
of the VERBMOBIL project is the translation of spoken
dialogues in the domains of appointment scheduling and
travel planning. Starting with the Bayes decision rule
as in speech recognition, we show how the required
probability distributions can be structured into three parts:
the language model, the alignment model and the lexicon
model. We describe the components of the system and
report results on theVERBMOBIL task. The experience
obtained in theVERBMOBIL project, in particular a large-
scale end-to-end evaluation, showed that the statistical
approach resulted in significantly lower error rates than
three competing translation approaches: the sentence
error rate was 29% in comparison with 52% to 62% for
the other translation approaches. Finally, we discuss the
integrated approach to speech translation as opposed to
the serial approach as it is widely used nowadays.

1. INTRODUCTION

In comparison with written language, speech and es-
pecially spontaneous speech poses additional difficulties
for the task of automatic translation. Typically, these
difficulties are caused by errors of the recognition process,
which is carried out before the translation process. As
a result, the sentence to be translated is not necessarily
well-formed from a syntactic point-of-view. Even without
recognition errors, speech translation has to cope with
a lack of conventional syntactic structures because the
structures of spontaneous speech differ from that of
written language.

The statistical approach shows the potential to tackle
these problems for the following reasons. First, the
statistical approach is able to avoid hard decisions at any
level of the translation process. Second, for any source
sentence, a translated sentence in the target language is
guaranteed to be generated. In most cases, this will be
hopefully a syntactically perfect sentence in the target
language; but even if this is not the case, in most cases, the

The work reported here was partly carried out in theVERBMOBIL

project (contract number 01 IV 701 T4) funded by the German Federal
Ministry of Education, Science, Research and Technology and in the
EUTRANS project (contract number IT-LTR-OS 30268) funded by the
European Union.

translated sentence will convey the meaning of the spoken
sentence.

The organization of this paper is as follows:

• Section 2:The Bayes Decision Rule For Written
Language Translation.
We will present the Bayes decision rule and the
resulting architecture for the translation of written
language. A key component in this approach is
the so-called alignment concept, which is similar to
Hidden Markov models used in speech recognition
and which will be considered in more detail.

• Section 3:Experimental Results.
Although the methods presented apply both to
written and spokenlanguage, we will limit our-
selves here to spoken language and report on the
large-scale experiments that were carried out in the
VERBMOBIL project.

• Section 4: Speech Translation: The Integrated
Approach.
As an alternative to theserial coupling of recog-
nition and translation that is used in our and other
systems as well, we will consider theintegrated
approach to recognition and translation and the
corresponding form of the Bayes decision rule [11].

Whereas statistical modelling is widely used in speech
recognition, there are so far only a few research groups
that apply statistical modelling to the translation of written
or spoken language. The presentation here is based on
work carried out in the framework of theEUTRANS

project [9] and theVERBMOBIL project [29].

2. BAYES DECISION RULE FOR WRITTEN
LANGUAGE TRANSLATION

2.1. Principle

In machine translation for written language, the goal is
the translation of a text given in a source language into
a target language. We are given a source stringfJ

1 =
f1...fj ...fJ , which is to be translated into a target string
eI
1 = e1...ei...eI . For historical reasons [6], we use

the symbolsf (like French) for source words and the
symbol e (like English) for target words. In this paper,
the termword always refers to afull-form word. Among
all possible target strings, we will choose the string with
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Figure 1: Architecture of the translation approach based
on Bayes decision rule.

the highest probability which is given by Bayes decision
rule [6]:

êI
1 = arg max

eI
1

{Pr(eI
1|fJ

1 )}

= arg max
eI
1

{Pr(eI
1) · Pr(fJ

1 |eI
1)} .

Here, Pr(eI
1) is the language model of the target

language, andPr(fJ
1 |eI

1) is the string translation model
which will be decomposed into lexicon and alignment
models. The argmax operation denotes the search
problem, i.e. the generation of the output sentence in the
target language. The overall architecture of the statistical
translation approach is summarized in Figure 1.

In general, as shown in this figure, there may be
additional transformations to make the translation task
simpler for the algorithm. The transformations may range
from the categorization of single words and word groups
to more complex preprocessing steps that require some
parsing of the source string. We have to keep in mind
that in the search procedure both the language and the
translation model are appliedafter the text transformation
steps. However, to keep the notation simple, we will not
make this explicit distinction in the subsequent exposition.

2.2. Alignment Modelling

A key issue in modelling the string translation probability
Pr(fJ

1 |eI
1) is the question of how we define the

correspondence between the words of the target sentence
and the words of the source sentence. In typical cases, we
can assume a sort of pairwise dependence by considering
all word pairs(fj , ei) for a given sentence pair(fJ

1 ; eI
1).

Here, we will further constrain this model by assigning
each source word toexactly onetarget word. Later, this
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Figure 2: Word-to-word alignment.

requirement will be relaxed. Models describing these
types of dependencies are referred to asalignment models
[6, 28].

When aligning the words in parallel texts, we typically
observe a strong localization effect. Figure 2 illustrates
this effect for the language pair German–English. In many
cases, although not always, there is an additional property:
over large portions of the source string, the alignment is
monotone.

To arrive at a quantitative specification, we define the
alignment mapping: j → i = aj , which assigns a word
fj in positionj to a wordei in positioni = aj . We rewrite
the probability for the translation model by introducing
the ‘hidden’ alignmentsaJ

1 := a1...aj ...aJ for each
sentence pair(fJ

1 ; eI
1). To structure this probability

distribution, we factorize it over the positions in the source
sentence and limit the alignment dependencies to a first-
order dependence:

Pr(fJ
1 |eI

1) =

= p(J |I) ·
∑

aJ
1

J∏

j=1

[p(aj |aj−1, I, J) · p(fj |eaj )] .

Here, we have the following probability distributions:

• the sentence length probability:p(J |I), which is
included here for completeness, but can be omitted
without loss of performance;

• the lexicon probability:p(f |e);
• the alignment probability:p(aj |aj−1, I, J).

By making the alignment probabilityp(aj |aj−1, I, J)
dependent on the jump widthaj − aj−1 instead of
the absolute positionsaj , we obtain the so-called
homogeneous hidden Markov model, for short HMM
[28].

We can also use azero-order model p(aj |j, I, J),
where there is only a dependence on theabsoluteposition



index j of the source string. This is the so-called model
IBM-2 [6]. Assuming a uniform alignment probability
p(aj |j, I, J) = 1/I, we arrive at the so-called model
IBM-1.

These models can be extended to allow for source
words having no counterpart in the translation. Formally,
this is incorporated into the alignment models by adding
a so-called ‘empty word’ at positioni = 0 to the target
sentence and aligning all source words without a direct
translation to this empty word.

In [6], more refined alignment models are introduced
by using the concept of fertility. The idea is that often
a word in the target language may be aligned to several
words in the source language. This is the so-called
model IBM-3. Using, in addition, first-order alignment
probabilities along the positions of the source string leads
us to model IBM-4. Although these models take one-
to-many alignments explicitly into account, the lexicon
probabilitiesp(f |e) are still based on single words in each
of the two languages. In systematic experiments, it was
found that the quality of the alignments determined from
the bilingual training corpus has a direct effect on the
translation quality [17]. By exchanging the role of target
and source language in the training procedure, we found
that the quality of the alignments could be significantly
improved.

From a general point of view, the alignments can be
interpreted as as a method for finding words or word
groups that are equivalent in source language and target
language. After these equivalences have been found, they
may be modelled in various, data-driven approaches to
build a translation system. Here, we will consider the
so-called alignment templates (see next paragraph), but
these equivalences may as well be used in finite-state
transducers [7].

2.3. Alignment Templates

A general shortcoming of the baseline alignment models
is that they are mainly designed to model the lexicon
dependences between single words. Therefore, we extend
the approach to handle word groups or phrases rather than
single words as the basis for the alignment models [18].
In other words, a whole group of adjacent words in the
source sentence may be aligned with a whole group of
adjacent words in the target language. As a result, the
context of words tends to be explicitly taken into account,
and the differences in local word orders between source
and target languages can be learned explicitly. Figure 3
shows some of the extracted alignment templates for a
sentence pair from theVERBMOBIL training corpus. The
training algorithm for the alignment templates extracts
all phrase pairs which are aligned in the training corpus
up to a maximum length of 7 words. To improve the
generalization capability of the alignment templates, the
templates are determined for bilingual word classes rather
than words directly. These word classes are determined
by an automatic clustering procedure [16].
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Figure 3: Example of a word alignment and of extracted
alignment templates.

2.4. Search

The task of the search algorithm is to generate the most
likely target sentenceeI

1 of unknown lengthI for an
observed source sentencefJ

1 . The search must make use
of all three knowledge sources as illustrated by Figure 4:
the alignment model, the (bilingual) lexicon model and
the language model. All three of them must contribute in
the final decision about the words in the target language.

To illustrate the specific details of the search problem,
we slightly change the definitions of the alignments:

• we useinvertedalignments as in the model IBM-4
[6] which define a mapping fromtarget to source
positions rather the other way round.

• we allow severalpositions in the source language
to be covered, i.e. we consider mappingsB of the
form:

B : i → Bi ⊂ {1, ..., j, ..., J}

We replace the sum over all alignments by the best
alignment, which is referred to as maximum approxima-
tion in speech recognition. Using a trigram language
modelp(ei|, ei−2, ei−1), we obtain the following search
criterion:

max
BI

1 ,eI
1

I∏

i=1


[p(ei|ei−1

i−2) · p(Bi|Bi−1, I, J) ·
∏

j∈Bi

p(fj |ei)]




Considering this criterion, we can see that we can build
up hypotheses of partial target sentences in abottom-to-
top strategy over the positionsi of the target sentence
ei
1 as illustrated in Figure 5. An important constraint for

the alignment is thatall positions of the source sentence
should be covered exactlyonce. This constraint is similar
to that of the travelling salesman problem where each city
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Figure 5: Illustration of bottom-to-top search.

has to be visited exactly once. Details on various search
strategies can be found in [5, 12, 15, 19].

In order to take long context dependences into
account, we use a class-based five-gram language model
with backing-off. Beam search is used to handle the
huge search space. To normalize the costs of partial
hypotheses covering different parts of the input sentence,
an (optimistic) estimation of the remaining cost is added
to the current accumulated cost as follows. For each word
in the source sentence, a lower bound on its translation
cost is determined beforehand. Using this lower bound,
it is possible to achieve an efficient estimation of the
remaining cost.

3. EXPERIMENTAL RESULTS

3.1. The Task and the Corpus

Within the VERBMOBIL project [29], spoken dialogues
were recorded. These dialogues were manually tran-
scribed and later manually translated byVERBMOBIL

partners (Hildesheim for Phase I and Tübingen for Phase
II). Since different human translators were involved, there
is great variability in the translations.

Each of these so-called dialogues turns may consist
of several sentences spoken by the same speaker and is
sometimes rather long. As a result, there is no one-to-
one correspondence between source and target sentences.
To achieve a one-to-one correspondence, the dialogue
turns are split into shorter segments using punctuation
marks as potential split points. Since the punctuation
marks in source and target sentences are not necessarily
identical, a dynamic programming approach is used to
find the optimal segmentation points. The number of
segments in the source sentence and in the test sentence
can be different. The segmentation is scored using a
word-based alignment model, and the segmentation with
the best score is selected. This segmented corpus is the
starting point for the training of translation and language
models. Alignment models of increasing complexity are
trained on this bilingual corpus [17].

A standard vocabulary had been defined for the vari-
ous speech recognizers used inVERBMOBIL. However,
not all words of this vocabulary were observed in the
training corpus. Therefore, the translation vocabulary
was extended semi-automatically by adding about 13 000
German–English word pairs from an online bilingual
lexicon available on the web. The resulting lexicon
contained not only word-word entries, but also multi-
word translations, especially for the large number of
German compound words. To counteract the sparseness
of the training data, a couple of straightforward rule-based
preprocessing steps were appliedbeforeany other type of
processing:

• categorization of proper names for persons and
cities,

• normalization of:
– numbers,
– time and date phrases,
– spelling:don’t → do not ,...

• splitting of
German compound words.

Table 1 gives the characteristics of the training corpus
and the lexicon. The 58 000 sentence pairs comprise
about half a million running words for each language of
the bilingual training corpus. The vocabulary size is the
number of distinct full-form words seen in the training
corpus. Punctuation marks are treated as regular words
in the translation approach. Notice the large number
of word singletons, i. e. words seen only once. The
extended vocabulary is the vocabulary after adding the
manual bilingual lexicon.



3.2. Offline Results

During the progress of theVERBMOBIL project, different
variants of statistical translation were implemented, and
experimental tests were performed for both text and
speech input. To summarize these experimental tests, we
briefly report experimental offline results for the following
translation approaches:

• single-word based approach [24];

• alignment template approach [18];

• cascaded transducer approach [27]:
unlike the other two-approaches, this approach
requires a semi-automatic training procedure, in
which the structure of the finite state transducers is
designed manually. For more details, see [27].

The offline tests were performed on text input for the
translation direction from German to English. The test
set consisted of 251 sentences, which comprised 2197
words and 430 punctuation marks. The results are shown
in Table 2. To judge and compare the quality of different
translation approaches in offline tests, we typically use the
following error measures [14]:

• mWER (multi-reference word error rate):
For each test sentence in the source language,
there areseveralreference translations in the target
language. For each translation of the test sen-
tence, the edit distances (number of substitutions,
deletions and insertions as in speech recognition)
to all reference translations are calculated, and
the smallest distance is selected and used as error
measure.

• SSER (subjective sentence error rate) [14]:
Each translated sentence is judged by a human
examiner according to an error scale from 0.0
(semantically and syntactically correct) to 1.0
(completely wrong).

Both error measures are reported in Table 2. Although
the experiments with the cascaded transducers [27] were
not fully optimized yet, the preliminary results indicated
that this semi-automatic approach does not generalize
as well as the other two fully automatic approaches.
Among these two, the alignment template approach was

Table 1: Bilingual training corpus, recognition lexicon
and translation lexicon (PM = punctuation mark).

German English

Training Text Sentence Pairs 58 332
Words (+PMs) 519 523 549 921
Vocabulary 7 940 4 673
Singletons 44.8% 37.6%

Recognition Vocabulary 10 157 6 871

Translation Added Word Pairs 12 779
Vocabulary 11 501 6 867

Table 2: Comparison of three statistical translation
approaches (test on text input: 251 sentences = 2197
words + 430 punctuation marks).

Translation mWER SSER
Approach [%] [%]

Single-Word Based 38.2 35.7
Alignment Template 36.0 29.0
Cascaded Transducers >40.0 >40.0

found to work consistently better across different test sets
(and also tasks different fromVERBMOBIL). Therefore,
the alignment template approach was used in the final
VERBMOBIL prototype system.

3.3. Integration into the VERBMOBIL Prototype
System

The statistical approach to machine translation is em-
bodied in thestattransmodule which is integrated into
the VERBMOBIL prototype system. We briefly review
those aspects of it that are relevant for the statistical
translation approach. The implementation supports the
translation directions from German to English and from
English to German. In regular processing mode, the
stattransmodule receives its input from therepair module
[22]. At that time, the word lattices and best hypotheses
from the speech recognition systems have already been
prosodically annotated, i.e. information about prosodic
segment boundaries, sentence mode and accentuated
syllables are added to each edge in the word lattice [3].
The translation is performed on the single best sentence
hypothesis of the recognizer.

The prosodic boundaries and the sentence mode
information are utilized by thestattrans module as
follows. If there is a major phrase boundary, a full
stop or question mark is inserted into the word sequence,
depending on the sentence mode as indicated by the
prosody module. Additional commas are inserted for
other types of segment boundaries. Theprosodymodule
calculates probabilities for segment boundaries, and
thresholds are used to decide if the sentence marks are
to be inserted. These thresholds have been selected in
such a way that, on the average, for each dialogue turn,
a good segmentation is obtained. The segment boundaries
restrict possible word reordering between source and
target language. This not only improves translation
quality, but also restricts the search space and thereby
speeds up the translation process.

3.4. Large-Scale End-to-End Evaluation

Whereas the offline tests reported above were important
for the optimization and tuning of the system, the most
important evaluation was the final evaluation of the
VERBMOBIL prototype in spring 2000. This end-to-end
evaluation of theVERBMOBIL system was performed at



Table 3: Sentence error rates of end-to-end evaluation
(speech recognizer with WER=25%; corpus of 5069 and
4136 dialogue turns for translation German to English and
English to German, respectively).

Translation Method Error [%]

Semantic Transfer 62
Dialogue Act Based 60
Example Based 52
Statistical 29

the University of Hamburg [23]. In each session of this
evaluation, two native speakers conducted a dialogue.
They did not have any direct contact and could only
interact by speaking and listening to theVERBMOBIL

system.
Three other translation approaches had been inte-

grated into theVERBMOBIL prototype system:

• a classical transfer approach [4, 8, 25],
which is based on a manually designed analysis
grammar, a set of transfer rules, and a generation
grammar,

• a dialogue act based approach [20],
which amounts to a sort ofslot filling by classifying
each sentence into one out of a small number of
possible sentence patterns and filling in the slot
values,

• an example-based approach [2],
where a sort of nearest neighbour concept is applied
to the set of bilingual training sentence pairs after
suitable preprocessing.

In the final end-to-end evaluation, human evaluators
judged the translation quality for each of the four
translation results using the following criterion:

Is the sentence approximatively correct: yes/no?
The evaluators were asked to pay particular attention to
the semantic information (e.g. date and place of meeting,
participants etc) contained in the translation. A missing
translation as it may happen for the transfer approach
or other approaches was counted as wrong translation.
The evaluation was based on 5069 dialogue turns for the
translation from German to English and on 4136 dialogue
turns for the translation from English to German. The
speech recognizers used had a word error rate of about
25%. The overall sentence error rates, i.e. resulting from
recognitionand translation, are summarized in Table 3.
As we can see, the error rates for the statistical approach
are smaller by a factor of about 2 in comparison with the
other approaches.

In agreement with other evaluation experiments, these
experiments show that the statistical modelling approach
may be comparable to or better than the conventional rule-
based approach. In particular, the statistical approach
seems to have the advantage if robustness is important,

e.g. when the input string is not grammatically correct or
when it is corrupted by recognition errors.

Although both text and speech input are translated
with good quality on the average by the statistical
approach, there are examples where the syntactic structure
of the produced sentence is not correct. Some of these
syntactic errors are related to long range dependencies
and syntactic structures that are not captured by the
m-gram language model used. To cope with these
problems, morpho-syntactic analysis [13] and grammar-
based language models [21] are currently being studied.

4. SPEECH TRANSLATION: THE INTEGRATED
APPROACH

In the Bayes decision rule, we have so far assumed written
input, i.e. perfect input with no errors. When trying
to derive a strict statistical decision rule for translation
of spoken input, we are faced with the additional
complication of speech recognition errors. So the question
comes up of how to integrate the probabilities of the
speech recognition process into the translation process.
Although there have been activities in speech translation
at several places [1, 10, 26], there has been not much work
on this question of recognition/translation integration.

Considering the problem of speech input rather than
text input for translation, we can distinguish three levels,
namely the acoustic vectorsxT

1 = x1...xt...xT over time
t = 1...T , the source wordsfJ

1 and the target wordseI
1:

xT
1 → fJ

1 → eI
1

From a strict point of view, the source wordsfJ
1 are

not of direct interest for the speech translation task.
Mathematically, this is captured by introducing the
possible source word stringsfJ

1 as hidden variables into
the Bayes decision rule:

arg max
eI
1

Pr(eI
1|xT

1 ) =

= arg max
eI
1

n
Pr(eI

1) · Pr(xT
1 |eI

1)
o

= arg max
eI
1

8<:Pr(eI
1) ·
X
fJ
1

Pr(fJ
1 , xT

1 |eI
1)

9=;
= arg max

eI
1

8<:Pr(eI
1) ·
X
fJ
1

Pr(fJ
1 |eI

1) · Pr(xT
1 |fJ

1 , eI
1)

9=;
= arg max

eI
1

8<:Pr(eI
1) ·
X
fJ
1

Pr(fJ
1 |eI

1) · Pr(xT
1 |fJ

1 )

9=;
∼= arg max

eI
1

(
Pr(eI

1) ·max
fJ
1

n
Pr(fJ

1 |eI
1) · Pr(xT

1 |fJ
1 )
o)

Here, we have made no special modelling assumption,
apart from the reasonable assumption that

Pr(xT
1 |fJ

1 , eI
1) = Pr(xT

1 |fJ
1 ) ,



i. e. the target stringeI
1 does not help to predict the

acoustic vectors (in the source language)if the source
string fJ

1 is given. In addition, in the last equation, we
have used the maximum approximation. Only in that
special case of speech translation, at least from a strict
point of view, there is the notion of a ’recognized’ source
word sequencefJ

1 . However, this word sequence is very
much determined by the combination of the language
modelPr(eI

1) of the target language and the translation
modelPr(fJ

1 |eI
1). In contrast, in recognition, there would

be only the language modelPr(fJ
1 ).

When presenting the statistical approach to written
language translation, the tacit assumption had been that
the source sentencefJ

1 was well formed. However, for
speech input, this assumption is no more valid. Therefore,
to take into account the requirement of ’well-formedness’,
we use a more complex translation model by including the
dependence on the predecessor word:

p(fj |fj−1, eaj
) in lieu of p(fj |eaj

)

Pr(fJ
1 |eI

1) =
∑

aJ
1

∏

j

[p(aj |aj−1, I) · p(fj |fj−1, eaj )]

For the sake of simplicity, here we have chosen the bigram
dependence.

It is instructive to re-interpret already existing ap-
proaches for handling speech input in a translation task in
the light of the Bayes decision rule for speech translation,
even if these approaches are not based on stochastic
modelling. The key issue in all these approaches is
the question of how the requirement of having both
a well-formed source sentencefJ

1 and a well-formed
target sentenceeI

1 at the same time is satisfied. From
the statistical point of view, this question is captured
by finding suitable models for thejoint probability
Pr(fJ

1 , eI
1) = Pr(eI

1) · Pr(fJ
1 |eI

1).
From the decision rule, it is clear that the translation

process will have an effect on the recognition process only
if the target language modelPr(eI

1) is sufficiently strong
or, to be more exact, if its strength is comparable to that
of the source language modelPr(fJ

1 ). We mention the
following approaches:

• In many systems, the method of n-best lists is
used. The recognizer produces a list of n best
source sentences, and the translation system works
as a filter that selects one out of the n sentences
using some suitable criterion. This joint generation
and filtering process can be viewed as a crude
approximation of the joint probabilityPr(fJ

1 , eI
1).

• When using finite-state methodology rather
than a fully stochastic approach, the probability
Pr(fJ

1 , eI
1) is modelled by the finite-state network

of the corresponding transducer, which is typically
refined by domain and range restrictions [7, 26].

• In the extreme case, we might be only interested
in the meaningof the target translation. Such

an approach was used in [20] for the Verbmobil
task. In Bayes decision rule, this case is captured
by putting most emphasis on asemantically
constrained language modelPr(eI

1).

However, it is clear that none of these approaches fully
implements the integrated coupling of recognition and
translation from a statistical point of view. We consider
this integrated approach and its suitable implementation
to be an open question for future research on spoken
language translation.

5. SUMMARY

In this paper, we have given an overview of the
statistical approach to machine translation and especially
its implementation in theVERBMOBIL prototype system.
The statistical system has been trained on about 500 000
running words from a bilingual German–English corpus.
Translations are performed for both directions, i.e. from
German to English and from English to German. Compar-
ative evaluations with other translation approaches of the
VERBMOBIL prototype system show that the statistical
translation is superior, especially in the presence of
speech input and ungrammatical input. In addition, we
have presented the fully integrated approach to spoken
language translation.
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