
ADAPTIVE TRAINING FOR ROBUST ASR

M.J.F. Gales

Cambridge University Engineering Department
Trumpington Street, Cambridge, CB2 1PZ, UK

mjfg@eng.cam.ac.uk

ABSTRACT

Adaptive training is a powerful training technique for building
speech recognition systems on non-homogeneous data. The aim is
to remove unwanted variability, such as changes in speaker, chan-
nel or acoustic environment, from desired changes, the acoustic
differences between words. During training two sets of models are
generated; a canonical model set for the desired “true” variability
of the speech data, and a set of transforms to represent the un-
wanted variability. The canonical model set trained in this fashion
should be more ”amenable” to being adapted to a particular target
condition and more “compact”. During recognition a transform to
the target domain is trained. This target specific transform is then
used with the canonical model set in the recognition process. The
underlying theory and assumptions used in adaptive training are
examined in this paper, Furthermore, the use of adaptive training
schemes in current state-of-the-art tasks is described, together with
a discussion of how such schemes may be used in the future.

1. INTRODUCTION

The traditional approach to achieving robust speech recognition,
is to build a speech recognition system on “clean” training data.
This model set is then adapted to the target acoustic environment,
or the corrupted feature vectors enhanced. In recent years there
has been a trend towards using found training data, rather than spe-
cially collecting training data, to build speech recognition systems.
Found data generally has greater variability than the specially col-
lected data. In addition to the variability resulting from multiple
speakers there are typically more changes in acoustic and channel
conditions. The usual approach to handle this non-homogeneous
training data is to rely on the frontend feature extraction process
to remove the unwanted variability, or acoustic factors. A model
set is then built on the set of features as if they all came from a
single, consistent, source. Current feature extraction techniques
do not perfectly remove all the factors, there is variation in the
acoustic feature vectors, sometimes dramatic, as the speaker and
acoustic conditions change. The acoustic models must account for
this additional variability. For this reason systems built in this fash-
ion are commonly known as multi-style trained systems. Though
good performance has been obtained with multi-style systems, it
would be preferable to have a training scheme that is more appro-
priate for building systems on found data. As the use of found data
increases techniques to handle this variability intelligently will be-
come more important. This paper presents adaptive training as one
possible scheme to handle the variability.

Adaptive training is a powerful training technique for building
speech recognition systems on non-homogeneous data. Though

simple adaptive training schemes are used in all state-of-the-art
speech recognition systems, the use of more complex adaptive
training schemes is less common. This paper examines some of the
reasons for this and possible solutions to the problems. Adaptive
training was originally proposed to handle speaker differences [1].
However, adaptive training schemes may also be used to train sys-
tems on data from multiple acoustic environments. The basic con-
cept of adaptive training is to train one or more transforms to repre-
sent each training speaker and acoustic environment. A canonical
model is then trained, given the set of speaker environment trans-
forms. This canonical model should represent only the inherent
variability of the data. As such it should be more compact than
the multi-style systems since the multi-style systems must also
model the speaker and acoustic variabilities. Furthermore, due to
the nature of the training the model set should be more amenable
to being transformed to a new speaker, or acoustic, condition than
standard multi-style systems. Of course if an appropriate set of
feature vectors that are inherently robust to speaker and environ-
ment changes is developed then the need for adaptive training is
removed. Unfortunately the most popular frontends for speech
recognition, MFCCs and PLPs, do not achieve this goal and, to
the author’s knowledge, such a frontend does not exist.

Adaptive training schemes may be split into three broad classes.
These are:

1. Model independent: these schemes do not make explicit
use of any model information. The two most common forms
are cepstral mean normalisation (CMN) and cepstral vari-
ance normalisation (CVN). These transforms are directly
applied to the features.

2. Feature transformation: these transforms also act on the
features but are derived, normally in using maximum like-
lihood estimation (MLE), using the current estimate of the
model set. Common versions of these feature transforms
are vocal tract length normalisation (VTLN) [2] and con-
strained MLLR [3].

3. Model transformation: the model parameters, means and
possibly variances, are transformed. Common schemes are
the original speaker adaptive training (SAT) [1] using max-
imum likelihood linear regression (MLLR) [4], and cluster
adaptive training (CAT) [5].

The first class, model-independent adaptive training, will be re-
ferred to as a simple adaptive training scheme. The other two
as complex adaptive training schemes. This paper examines the
advantages and disadvantages of using adaptive training schemes
for robust ASR. Possible future directions for their use of such
schemes are also described.



2. ADAPTIVE TRAINING

The original motivation for adaptive training was based on in-
tegrating the adaptation scheme (MLLR) into the training pro-
cess [1]. This papers describes adaptive training in a similar fash-
ion, but presented as a form of graphical model. This allows some
of the proposed schemes to be simply derived and motivated. Stan-
dard HMMs may be viewed as a (simple) dynamic Bayesian net-
work. The addition of adaptive training yields the network of fig-
ure 1.
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Fig. 1. Dynamic Bayesian network for adaptive training

It is normally assumed that the speaker/acoustic condition is
constant over a “block” (usually sentence) of data. Thus over a
block of data �t+1 = �t. Other constraints, for example that the
transform is itself generated by a Markov process, are possible [6],
but have not been applied for complex continuous transforms. The
likelihood of a sequence of feature vectors in block s, O(s) =
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where M = f�;�g are the sets of model parameters. and ~H is
the (correct) data transcription. If the canonical model is an HMM
then
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where fQ( ~H)g is the set of all valid state sequences through the
model of length T for the transcription, ~H, and qt is the state at
time t along the particular pathQ. From the training data we need
to extract two distinct sets of model parameters.

1. Canonical model parameters: this models the acoustic
data given the “unwanted” acoustic factor transform. For
the work in this paper a standard HMM is used for this
model. Thus the set of model parameters� consists of the
state probability density functions for each state q, �q , and
the state sequence probability (duration model) parameters,
�d.

2. Transform distribution: these represent the variation over
the training transforms. The set of parameters to be trained
is denoted as �. The exact form of the prior transform dis-
tribution, p(�j�), is important, particularly when no form
of test set adaptation is used.

The model parameters are usually trained MLE. Here

M̂ = argmax
M
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where S is the number of training blocks. In common with stan-
dard HMM training the model parameters may be estimated using
expectation-maximisation (EM) [7]. The following auxiliary func-
tion is optimised with respect to M̂
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where M is the old model set and M̂ is the “new” set of model
parameters. Unfortunately it is not possible to directly estimate
the model parameters from this expression. Instead it is normally
assumed that there is sufficient data for each block s such that
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where the ML estimate of the transform parameters is used
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Now equation 4 may be written as
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Equation 8 for the case of an HMM canonical model gives the
“standard” adaptive training scheme [1]. Equation 9 requires the
estimation of a generative model for the transform parameters. The
exact form of the optimisation required for each of these equations
depends on the transformation being used. In the original formu-
lation the transform parameter distribution was fixed as uniform
over the transform parameter space and never updated.

Adaptive training is an iterative training process. There are
two distinct stages. First, given the current set of model param-
eters, the transform parameters are estimated for each block us-
ing equation 6. The estimation of the transform parameters for a
block may itself be an iterative process based on EM, for exam-
ple MLLR [4]. Then, given the transform parameters, the model
parameters are updated using equation 8 and the process repeated.
The estimation of the model parameters is itself an iterative pro-
cess as the HMM model parameters are usually estimated using
EM. If the transform parameter distribution is also to be estimated
this would add yet another stage in the iterative training process.



The standard scheme for using adaptively trained schemes dur-
ing recognition is to estimate the target domain transform based on
some supervised adaptation data O(a) (i.e. the correct transcrip-
tion of the adaptation data is know). MLE is used to estimate the
transform

�̂
( ~H)

= argmax
�

�
p(O

(a)j�;�; ~H)
�

(10)

This transform parameter value is then used in the decoding pro-
cess for subsequent dataO. For hypothesis H
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As the estimation of the transform parameters is usually based on
EM it is important to use multiple iterations of transform estima-
tion. The number of iterations required is dependent on how close
the initial estimate of the transform is to “true” transform parame-
ters.

Adaptive training is a very attractive scheme for training speech
recognition systems on found data as it can handle non-homogeneous
training data. Yet the use of adaptive training schemes, other than
the simplest model-independent transforms, is not as widespread
as might be expected. This may partly be attributed to the ad-
ditional complexity in training the model sets. However this is
“simply” a software problem. The main reason for the limited use
is the use of a point MLE estimate for the test adaptation trans-
form. When only limited adaptation data is available there is lit-
tle confidence (i.e. large variance) on the estimate of the trans-
form parameters. Simply decoding with the ML estimate may de-
grade consequent performance. This problem may be expected
to be greater for adaptively trained systems, which rely more on
“correct” transformations than standard multi-style systems. This
problem becomes even worse when unsupervised adaptation is
used as described in the next section. Despite these problems good
performance gains have been found using complex adaptive train-
ing schemes for supervised adaptation [1, 3].

3. UNSUPERVISED ADAPTATION

The section above has assumed that supervised adaptation is be-
ing used during recognition. For many tasks there is no suitable,
correctly transcribed, adaptation data. In these situations unsuper-
vised adaptation techniques are required. Unsupervised adaptation
comes in two basic forms. The first, incremental adaptation allows
the test data to be decoded only once. An alternative, common
scenario, is transcription mode adaptation. Here it is possible to
recognise the data multiple times and, if desired, use it as adapta-
tion data to recognise itself. This will be referred to as self adapta-
tion. This section will describe the issues of using adaptive training
in an unsupervised adaptation mode. In particular the use of adap-
tive training with self adaptation is described. Similar arguments
hold for unsupervised incremental adaptation.

If possible during decoding the correct set of transform pa-
rameters, ~� would be used. However, as there is no adaptation
data available it is not possible to obtain an estimate of this correct
transform. The problem is to obtain a set of transform parameters
“close” to the true parameters with no explicit adaptation data. The

following approximation may be used to obtain an estimate of the
transform parameters.
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is obtained using MLE and the hypothesis �H. The first
approximation assumes that only the MAP estimate of the tran-
scription, rather than the sum over all possible hypothesis, is re-
quired. Second it is assumed that the ML estimate of the transform
parameters, rather than the MAP estimate or posterior distribution,
is sufficient. After each approximation the likelihood of the data,
O, is guaranteed to be greater than or equal to the previous likeli-
hood. Using these approximations a set of transform parameters,

�̂
( �H)

, are obtained that may be used in decoding. The hope is that

the error rate of the hypothesis, Ĥ, using the transform, �̂
( �H)

, is
lower than that for the original hypothesis, �H. It is not necessary
to only do a single update of the hypothesis. It is possible to re-

peat this whole process by generating a new transform, �̂
(Ĥ)

with
the new hypothesis Ĥ and recognising again. This is the basis of
schemes such as iterative MLLR [8].

Though the likelihood of the test data is guaranteed to not de-
crease with the estimated transform, there are a couple of major
issues with this form of adaptation, in addition to the problems
described for supervised adaptation. The first problem is that for
each of the approximations made the system becomes more closely
“tuned” to the hypothesised transcription �H. If the complexity of
the transform is too high, or the length of the sentence is too short,
then there will be a strong tendency for the new hypothesis Ĥ to
equal the original hypothesis �H, yielding no performance gain. In-
deed, this has been used as a stopping criterion for increasing the
complexity of the transformation with MLLR [9]. The need to bal-
ance the tuning to one particular hypothesis is one of the important
issues with self adaptation.

The second major issue with unsupervised “self” adaptation
is how to obtain the original hypothesis, �H. The expression given
in equation 13 has no simple closed-form solution. Instead some
approximation is required. The simplest solution is to use the un-
adapted model parameters in the initial decoding,

�H = argmax
H

(p(Oj�;H)P (H)) (14)

In some systems, notably the original work by BBN, decoding in
this fashion yielded only a small increase in the error rate of the
initial hypothesis compared to a multi-style system. However, on
other systems it has been found to give poor performance [10].
Alternatively a multi-style model, �(Mult), may be used. This
requires two sets of model parameters to be stored. It also means
that the alignments used to estimate the transforms, when EM is
used, may not be closely related to those for the adaptively trained
system.



These problems have have limited the use of complex adap-
tive training schemes for unsupervised adaptation particularly for
highly variable acoustic environments. In these conditions the
need for a “good” estimate of the transform parameters is very
important for adaptively trained systems, even more so than for
multi-style trained systems. Despite these problems significant
reductions in word error rate have been obtained using adaptive
training on both SwitchBoard and Broadcast News Transcription
tasks compared to using multi-style trained systems1. However to
make greater use of adaptively trained systems, particularly for sit-
uations with great variability in the acoustic environment, schemes
to improve the transform estimation are required.

4. ADAPTIVE TRAINING SCHEMES

It is useful to describe each of the classes of adaptive training
scheme in terms of the general adaptive training theory previously
given. In practice some state-of-the-art systems use a combination
of adaptive training schemes. For example [11] combines the use
of a model independent scheme (CMN), a feature-space transfor-
mation (VTLN) and model-space adaptation (MLLR).

4.1. Model Independent

Model independent adaptive training is the most commonly used,
and simplest, form of adaptive training. It is invariably used for
self-adaptation. The transform is assumed to be independent of
the model parameters and the hypothesised transcription. Given
these assumptions the “best” transformation is to sphere the data2,
i.e. transform the data so that it is zero mean and identity covari-
ance matrix. These schemes do not require an hypothesis of the
test data to be made, dramatically simplifying unsupervised adap-
tation. This is the basis of CMN and CVN. Since model indepen-
dent schemes only alter the training data no modifications to the
canonical model training algorithms are required.

There are a number of problems with model independent adap-
tive training schemes which limit their usefulness. The most seri-
ous limitation is that the amount of data is assumed to be large
enough that the moments of the data are independent of what was
said. For short blocks of data this can result in poor performance.
One solution to this is to make the “moment-window” a moving
average over the data. This allows the inherent variability of the
transform estimate to be built into the canonical model parameters.
This is the basis of RASTA processing [13]. A second limitation
is that only global transforms are usually used. Many linear trans-
formation schemes make use of multiple transforms for improved
adaptation [4].

4.2. Feature-Space Transformations

Feature-space transformations may be viewed as a generalisation
of model-independent adaptive training. The transformation of the
features is now determined using the model parameters, �, and
some hypothesis, H. Feature-space transformations have the gen-
eral form

ô
(s)
t = F(s)

(ot) (15)
1See the NIST web-site at

http://www.nist.gov/speech/tests/ctr/h5 2001/postwshp.htm
for a series of system descriptions.

2Spectral subtraction [12] is not included as a model independent
scheme as it requires additional information, noise estimates, to be used.

Using feature-space transformations results in very simple modifi-
cations to the standard HMM update formulae to find� [3]. How-
ever due to the need to maintain consistent likelihood calculations,
achieved using the Jacobian, the calculation of the transform pa-
rameters may be complicated. For biases a simple solution is pos-
sible [14]. The optimisation of a full linear matrix transformation
is described in [3] (sometimes referred to as constrained MLLR)
and its use in adaptive training schemes. Constrained versions of
linear transforms for adaptive training [15] have also been exam-
ined. It is not necessary for there to be a single transformation for
all features. Separate transforms may be associated with groups
of Gaussian components from the model set, or even regions of
acoustic space. A non-linear transformation scheme is VTLN [2].
The complexities of the Jacobian normalisation are usually ignored
and the parameters estimated in a simple grid search fashion. In
many VTLN schemes a GMM is used to estimate the warping fac-
tors, since this does not require the use of an hypothesised tran-
scription. However for more complex transformations it is im-
portant to use the actual model parameters when estimating the
transform parameters.

As the estimation of the transform parameters is dependent on
the model parameters and the hypothesis it should be less sensitive
to short blocks of data. However if the hypothesis is poor, such
as may occur in mismatched acoustic conditions, the estimated
transform may also be poor. Furthermore though more robust to
short sentences than model independent schemes, there may still
be large variances on the estimates of the transform parameters.

4.3. Model-Space Transformations

One of the first forms of adaptive training was model-based, gender-
dependent systems. This was extended to more complex transfor-
mations in [1]. The general form of the model-based transforma-
tion is
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The component priors may also be adapted. In a similar fashion
to the feature-space transformations the use of linear transforms
has been extensively investigated. Full matrix transformations of
the means have been used in adaptive training in [1]. Full vari-
ance transforms and the possible use in adaptive training, though
with no experiments, in [3]. Recently the use of multiple clus-
ter schemes within and adaptive training process has been pro-
posed [16].

Model-space adaptation is the most flexible of the adaptive
training schemes. The main problem with model-space adaptive
training is the cost of training the models. A naive implementation
requires maintaining separate statistics for every training block.
For current state-of-the-art databases this is impractical. As an
alternative an iterative scheme updating model means and then
the variances may be used [11]. Even this iterative scheme re-
quires significantly more memory than standard training schemes.
Model-space schemes will also suffer in the same way as the feature-
space transforms from limited data and poor hypothesis.

5. ADAPTIVE TRAINING EXTENSIONS

The previous sections have described the problems with using adap-
tive training schemes for ASR. This section describes some of the
schemes that may, or have been used, in adaptive training to im-
prove performance. As one of the main problems with adaptive



training is the estimation of the target domain transform possi-
ble solutions may be taken from advances in estimating adapta-
tion transforms for multi-style systems. The need for robust esti-
mates is more important for adaptively trained systems than multi-
style systems. Adaptively trained systems rely on the transforms to
map from some normalised domain to the target domain, whereas
multi-style systems are tuned from a general to a specific domain.
Thus schemes that work on multi-style systems may be expected
to yield greater gains for adaptively trained systems.

5.1. MAP Adaptation

Standard adaptive training uses the MLE of the transform parame-
ters. When there is limited adaptation data, or unsupervised adap-
tation is being used, then the transform may be a “poor” estimate
of the correct acoustic transform. One way to reduce this problem
is to use priors on the transform parameters. This has been pro-
posed for CAT [17] and MLLR [18, 19]. The estimation is now3
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The use of MAP adaptation may also be incorporated into the
adaptive training process.

To date MAP adaptation has not been extensively used in the
adaptive training framework. Given that it fits very naturally into
the framework and is a simple approach to handling some of the
problems this is surprising. Though MAP adaptation is useful it
does not solve all the problems associated with adaptive training
schemes. It does not address the need to have an initial transcrip-
tion for unsupervised adaptation, nor the situation when there is
very little adaptation data available.

5.2. Lattice-Based Adaptation

Recently the use of lattice-based adaptation techniques have been
proposed [20] for self-adaptation. Though the experiments were
based on multi-style systems the technique is directly applicable
to adaptively trained schemes, particularly model-space adaptive
training schemes. The following form of approximation is used
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By summing over all possible hypothesis rather than simply tak-
ing the MAP estimate, the transform parameters should be far less

“tuned” to a specific hypothesis. Thus decoding with �̂
(H)

rather

than �̂
( �H)

should give a greater chance of self adaptation improv-
ing the recognition performance. Lattice-based adaptation is an
iterative process since the estimation of the transform parameters

3As pointed out in [19] a true empirical Bayes estimate would use a
prior distribution estimated on a separate dataset from that used to estimate
the model parameters. In this paper the distribution over the transform
parameters is treated simply as model parameters.

is itself an EM process as HMM are being used. This form of adap-
tation becomes more useful as the error rate of the initial hypothe-
sis becomes large, for example in mismatched acoustic conditions.
Lattice-based adaptation allows an elegant, natural, extension to
standard unsupervised adaptation. However, it does not address
the issue of highly limited training data.

5.3. Posterior Adaptation

Both the previous schemes have relied on the use of a MAP or
ML estimate of the transform parameters. To handle limited data
posterior adaptation would be preferable. Here we use
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and �H is given by equation 13. Rather than making a MAP, or ML,
estimate of the transform parameters the posterior distribution over
the transform parameters is used for the next decoding run
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As previously mentioned there is no simple closed-form solution.
to the integral. A simple, crude, approximation is given in [10].
This scheme used MLLR as the transformation and approximated
the integral as
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where, assuming a P -component prior,
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and ��(qmp) = E fojq;m; pg and similarly for the covariance ma-
trices and component priors.

The use of posterior adaptation allows the adaptively trained
models to be used directly in recognition. [10] shows that this ap-
proximation is “reasonable”. One important question with poste-
rior adaptation is how to “correctly” estimate the posterior. This is
not discussed in [10]. Combining posterior adaptation with lattice-
based adaptation gives an elegant scheme for self, or unsupervised,
adaptation.

5.4. Discriminative Adaptive Training

Recently the use of discriminatively trained models has been found
to significantly reduce the error rate on large vocabulary speech
recognition tasks, in particular the use of maximum mutual infor-
mation estimation (MMIE) training [21]. This form of estimation
has also been used in a version of adaptive training [22]. Rather
than estimating the model parameters to maximise the likelihood
they are trained so that

M̂ = argmax
M

 
SX
s=1

log

�
p(O(s)jM; ~H)P ( ~H))P
H p(O(s)jM;H)P (H)

�!
(24)



It would be preferable to estimate all the model parameters, the
canonical model, transform prior parameters and the intermediary
estimates of the transform parameters using MMIE. Though re-
estimation formulae for discriminative training MLLR transforms
have been proposed [23], the MMIE of canonical model parame-
ters has not been investigated. In contrast the MMIE of canoni-
cal models with feature-space adaptive training has been investi-
gated [22], since it requires minimal changes to the MMIE code.
However in the talk presented the feature-based transforms were
estimated using MLE on ML trained models and fixed for all sub-
sequent model estimation iterations

One of the problems with full discriminative adaptive training
is that supervised adaptation must be used, as the correct transcrip-
tion is required to estimate the target domain transform. It also
doesn’t deal with the limited data problems described earlier.

6. WHERE NEXT?

This paper has given a overview of adaptive training schemes and
how they may are applied in state-of-the-art systems. Various lim-
itations and possible solutions have been described. However the
possibilities for adaptive training have not been fully investigated.
The use of posterior adaptation has not been examined to any ex-
tent. In particular suitable approximations are required for decod-
ing. Furthermore for posterior adaptation to be useful appropriate
prior distributions must be found. The majority of adaptive train-
ing schemes are currently based on linear transformations of the
features or model parameters. However it is known that the effects
of background noise for example are highly non-linear. Where
there are high levels of background noise in the training data adap-
tive training schemes incorporating appropriate non-linear trans-
formations may be useful e.g. PMC [24]. Techniques for MLE of
the background noise conditions have already been proposed [25]
but not used in the estimation of the canonical model. Finally the
general framework of Bayesian networks incorporating transfor-
mations is very powerful. Little research has been performed in
this area.
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