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ABSTRACT

Nowadays, hidden Markov models (HMMs) and n-grams
are the basic components of the most successful speech recog-
nition systems. In such systems, HMMs (the acoustic mod-
els) are integrated into a n-gram or a stochastic finite-state
grammar (the language model). Similar models can be used
for speech translation, and HMMs (the acoustic models) can
be integrated into a finite-state transducer (the translation
model). Moreover, the translation process can be performed
by searching for an optimal path of states in the integrated
network. The output of this search process is a target word
sequence associated to the optimal path. In speech trans-
lation, HMMs can be trained from a source speech corpus,
and the translation model can be learned automatically from
a parallel training corpus.

This approach has been assessed in the framework of the
EUTRANS project, founded by the European Union. Exten-
sive speech-input experiments have been carried out with
translations from Spanish to English and from Italian to En-
glish translation, in an application involving the interaction
(by telephone) of a customer with a receptionist at the front-
desk of a hotel. A summary of the most relevant results are
presented in this paper.

1. INTRODUCTION

The statistical framework has proved very useful in auto-
matic speech recognition. This paradigm is based on auto-
matically built acoustic models from sufficiently large speech
training sets and the language model from sufficiently large
text training set. An interesting feature of this approach is
the type of search used to obtain a decoded sentence. This
search is performed on an integrated network of acoustic
models in a language model. This integration can be car-
ried out through the use of stochastic finite-state networks
as models, particularly hidden Markov models as acoustic
models and n-grams or stochastic finite-state grammars as
language models.

This work has been partially supported by the European Union under
grant IT-LTR-OS-30268.

This approach can be naturally extended to the develop-
ment of (speech-input) machine translation systems. On the
one hand, the acoustic models can be trained in a way simi-
lar to that used in speech recognition. On the other hand, the
translation model can be learned from a sufficiently large
training set of parallel-text, using adequate learning algo-
rithms [1, 2].

The possibility of using stochastic finite-state transduc-
ers for limited-domain translation has been discussed in pre-
vious works [3, 4, 5]. These models obviously support the
integrated architecture as well as the serial architecture. The
later architecture is usually adopted in the speech translation
prototypes proposed so far. In the integrated architecture,
the acoustic models areintegratedin the translation model
in a way similar to that used in speech recognition. The
search procedure for translation is based on the very same
Viterbi search engine used in speech recognition. A similar
approach has been proposed in [6, 7].

In this paper, we present the main results that have been
achieved for speech translation using finite-state method-
ologies. These methodologies were developed in the EU-
TRANS project. EUTRANS was a five-year joint effort
of four European institutions (http://www.zeres.de/ eutrans)
which was partially funded by theOpen Domainof the
Long-Term Research (LTR)ESPRIT program of the Eu-
ropean Union.

2. FINITE-STATE TRANSDUCERS AND MACHINE
TRANSLATION

2.1. The statistical framework for machine translation

Let s be a source sentence. The translation ofs into a tar-
get language can be formulated as the search for a word
sequence,̂t, from a target language such that:

t̂ = argmax
t

Pr(t | s) = argmax
t

Pr(t, s). (1)

Pr(s, t) can be approximated using astochastic finite-
state transducer(SFST) as atranslation model[8]. Other
different types of models have been proposed elsewhere [9,
10, 11].



2.2. Finite-state transducers

A SFST,T , is a tuple<Q, Σ, ∆, R, q0, F, P >, where:

(a) Q is a finite set ofstates

(b) q0 is theinitial state

(c) Σ is a finite set ofinput symbols(source words)

(d) ∆ is a finite set ofoutput symbols(target words) (Σ∩
∆ = ∅)

(e) R is a set of transitionsof the form (q, a, ω, q′) for
q, q′ ∈ Q, a ∈ Σ, ω ∈ ∆? and1

(f) P : R → IR+ (transition probabilities) and F :
Q→ IR+ (final-state probabilities) are functions that
∀q ∈ Q:

F (q) +
∑

∀(a, ω, q′) ∈ Σ×∆? ×Q :
(q, a, ω, q′) ∈ R

P (q, a, ω, q′) = 1.

Fig. 1 shows a small fragment of a SFST for Italian to En-
glish translation.

una / "a" (0.5)

la / "the" (0.5)

camera / "room" (0.1)

camera / "room" (0.3)

camera / "" (0.6)

doppia / "with two beds" (1)

doppia / "double room" (0.3)

singola / "single room" (0.7)

Fig. 1. Example of a SFST.”” denotes the empty string. The
source sentence“una camera doppia”can be translated to either
“a double room” or “a room with two beds”. The most probable
translation is the first one with probability of 0.09.

A particular case of finite-state transducers are known
as subsequential transducers (SSTs). These are finite-state
transducers with the restriction of being deterministic (if
(q, a, ω, q), (q, a, ω′, q′) ∈ R, thenω = ω′ andq = q′) [2].

For a pair(s, t) ∈ Σ? ×∆?, a translation form, d(s, t),
is a sequence of transitions in a SFSTT :

d(s, t) : (q0, s1, t̃1, q1), (q1, s2, t̃2, q2), . . . , (qI−1, sI , t̃I , qI),

where t̃j denotes a substring of target words (the empty
string fort̃j is also possible), such thatt̃1 t̃2 ... t̃I = t andI
is the length of the source sentences.

The probability of a translation form,d(s, t), is:

PrT (d(s, t)) =
I∏

i=0

P (qi−1, si, t̃i, qi) · F (qI). (2)

1By ∆? andΣ? we denote the sets of finite-length strings on∆ andΣ,
respectively

Finally, the probability of the pair(s, t) is

PrT (s, t) =
∑

d(s,t)
PrT (d(s, t)). (3)

Using PrT (s, t) as an approximation toPr(s, t) in Eq. 1,
the stochastic translation of a source sentences ∈ Σ? by a
SFSTT is given by

argmax
t

PrT (s, t). (4)

The probability of Eq. 3 can be approximated by using the
maximisation over all possible translation forms instead of
the sum,

PrT (s, t) ≈ max
d(s,t)

PrT (d(s, t)). (5)

In this case, the stochastic translation ofs by a SFSTT
can be approximately computed using the Viterbi algorithm.
This algorithm can search for the optimal sequence of states
in the SFSTT that deals withs. The translation ofs is
the concatenation of target strings that are associated to the
optimal sequence of transitions [12].

These models have implicit source and target language
models in their definitions. In practice, the source language
model can be obtained by removing the target words from
each transition. On the other hand, the target language model
can be obtained by removing the source words from each
transition.

2.3. Learning finite-state transducers

The structural (states and transitions) and the probabilistic
components of a SFST can be learned automatically from
training pairs in a single process using theMorphic Gen-
erator Translator Inference (MGTI)technique [1]. Alter-
natively, the structural component can be learned using the
OSTIA Modified for Employing Guarantees and Alignments
(OMEGA)technique [2]. In this case, the probabilistic com-
ponents can be estimated in a second step using amaximum
likelihood technique or other possible criteria [12]. One of
the main problems that appears during the learning process
is the modelling of the events that have not been seen in the
training set. This problem can be confronted in a way simi-
lar to the one used in language modelling by using smooth-
ing techniques in the estimation process of the probabilistic
components of the SFST [13]. Alternatively, the smoothing
can be considered in the process of learning both compo-
nents [1].

The MGTI is based on the following idea for the infer-
ence of a transducer: given a finite sample of string pairs [1]:

1. Building training strings. Each training pair is trans-
formed into a single string from anextended alphabet
to obtain a new sample of strings.



2. Inferring a (stochastic) regular grammar. Typi-
cally an N-gram is inferred from the sample of strings
obtained in the previous step.

3. Transforming the inferred regular grammar into a
transducer. The symbols associated to the grammar
rules are transformed into input/output symbols by
applying an adequate transformation, thereby trans-
forming the grammar inferred in the previous step
into a transducer.

The transformation of a parallel corpus into a string corpus
is performed using statistical alignments (a function from
the set of positions in the target sentence to the set of posi-
tions in the source sentence) [9, 10, 11]. A training string
is built by assigning the corresponding aligned word from
source sentence to each word from the target sentence. This
assignment must not violate the order in the target sen-
tence [1]. Using this type of transformation from a pair of
strings into a string of extended symbols, the transforma-
tion from a grammar to a finite-state transducer in step 3 is
straightforward.

An interesting feature of the MGTI method is that all
the techniques which are known forn-gram smoothing are
readily applicable in the second step of the method.

The OMEGA algorithm [2] can be seen as an improve-
ment over OSTIA [14], a previous algorithm for inferring
SSTs.

There are two main phases in the training:

1. Building an initial tree for representing the samples,
where the prefixes of the source sentences are repre-
sented in a compact mode and the target sentences are
in the leaves of the tree.

2. State merging. A series of merges of states is carried
out in order to generalize the training corpus. After
each merge of states, the resulting graph should deal
with the training set and possibly other pairs.

The sequence of merges is performed, in the initial tree,
level by level taking into account the states in the previous
levels.

Source and/or target language models are used to deter-
mine whether two states can be merged. Another criterium
for joining states makes use of statistical dictionaries and
alignments [9, 10, 11].

3. FINITE-STATE TRANSDUCERS AND SPEECH
TRANSLATION

3.1. The statistical framework for speech translation

Let x be an acoustic representation of a given utterance. The
translation ofx into a target language can be formulated as

the search for a word sequence,t̂, from a target language
such that:

t̂ = argmax
t

Pr(t | x). (6)

Conceptually, the translation can be viewed as a two-
step process [15, 11]:

x→ s→ t,

wheres is a possible decoded sequence ofx in the source
language whose word sequence in the target language ist.
Consequently,

argmax
t

Pr(t|x) = argmax
t

∑
s

Pr(t, s|x), (7)

with the natural assumption thatPr(x|s, t) does not depend
on the target sentencet,

argmax
t

Pr(t|x) = argmax
t

(∑
s

Pr(s, t) · Pr(x|s)

)
. (8)

In practice, the sum in Eq. 8 can be approximated with a
maximisation. This simplification allows the simultaneous
computations of the decoded sentence and the target sen-
tence:

argmax
t

Pr(t|x) ≈ argmax
t

max
s

(Pr(s, t) · Pr(x|s)) . (9)

Pr(x|s) is usually approximated usingacoustic models, typ-
ically hidden Markov models [16] andPr(s, t) is approxi-
mated using atranslation model. As for machine translation
(Section 2), SFSTs are models that allow a direct approach
to this probabilistic distributionPr(s, t).

3.2. Architectures for speech translation

Using Eq. 3 (or Eq. 5) as an approach toPr(t, s), and HMMs
as approaches toPr(x|s), Eq. 9 is transformed in the opti-
mization problem:

max
s,t

(PrT (s, t) · PrM(x|s)) , (10)

wherePrM(x|s) is the density value supplied by the corre-
sponding HMMs associated tos for the acoustic sequence
x.

The computation of the most likely target sentencet
for an observedacoustic source sentencex is accomplished
using a search algorithm for the optimization problem in
Eq. 10.

For the sake of simplicity in this section, we assume that
x is segmented inI acoustic subsequences and that each
sequence is associated to one source word:

PrM(x | s) =
I∏

i=1

PrM(x̄i|si), (11)



wherex̄i is the i acoustic segment, and each source word
si has a HMM associated that supplies the density values
PrM(x̄i|si). Therefore, if Eq. 5 is used asPrT (s, t), Eq. 10
can be rewritten

max
s,t

max
d(s,t)

I∏
i=1

P (qi−1, si, t̄i, qi) · PrM(x̄i|si). (12)

0 1
la / "the" 1

2maleta / "" 0.5

3
bolsa / "" 0.5

4

azul / "blue suitcase" 1

azul / "blue bag" 1

a) Original FST.

0 l / "" 1a / "the"
m / ""

b / ""

a / ""

o / ""

l / "" e / ""
t / ""

2t / ""
a / ""

a / "" z / ""
s / ""

l / "" s / ""

3s / ""
a / ""

a / ""
z / ""
s / ""

u / ""

4
l / "blue suitcase" 1

u / "" l / "blue bag"

b) Lexical expansion.
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3"" a
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z

s
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l

4
"blue suitcase"

z

s

u l

"blue bag"

c) Phonetic expansion.

Fig. 2. Example of the integration process of the lexical knowl-
edge (figure b) and the phonetic knowledge (figure c) in a FST
(figure a). “” denotes the empty string.

From Eq. 12, the search for an optimalt (and s) can
be viewed as the search problem for the optimal sequence
of states in an integrated network (integrated architecture).
This network is built by a process of substitution of the
edges of the SFST by the corresponding HMM of the source
word associated to the edge. This integration is shown in
Fig. 2. A small SFST is presented in the part a) of this fig-
ure. In part b), the source words in each edge are substituted
by the corresponding phonetic transcription. In part c), each
phoneme is substituted by the corresponding HMM of the
phone.

Sometimes, the integrated network can be very huge and
the search for the optimal target can require a high computa-
tional effort. Heuristic techniques such as beam search can
be used to reduce the computational cost of the search. An
alternative way of reducing this computational effort can be
achieved by a further approximation consisting in breaking
the search down into two steps in a“serial architecture”.
In this case, there is a conventional source speech decoding
that is followed by a translation of the decoded sentence into
the target sentence.

UsingPr(t, s) = Pr(t | s) ·Pr(s) in Eq. 9, the optimiza-
tion problem can be presented as

argmax
t

max
s
{Pr(t|s) · Pr(s) · Pr(x|s)} . (13)

The search for the optimal target sentence to Eq. 13 can be
approximated as follows:

1. Word decoding ofx. The source sentenceŝ is searched
using a source language model,PrN (s), as an ap-
proximation toPr(s) and the corresponding HMMs,
PrM(x | s) , to modelPr(x | s):

ŝ≈ argmax
s
{PrN (s) · PrM(x | s)} .

2. Translation ofŝ. The target sentencêt is searched us-
ing a SFST,PrT (ŝ, t), as an approximation toPr(ŝ, t)
(argmaxt Pr(t | ŝ) = argmaxt Pr(t, ŝ)):

t̂ ≈ argmax
t

PrT (t, ŝ).

4. EXPERIMENTS AND RESULTS

4.1. The ATROS system

The speech translation system used in the experiments was
based on the ATROS (Automatically Trainable Recognizer
Of Speech) engine [5]. ATROS is a continuous-speech
recognition/translation system which uses stochastic finite-
state models at all its levels: acoustic-phonetic, lexical and
syntactic/translation. All these models can be obtained in
an automatic way. A first version of ATROS for Spanish
continuous speech recognition was presented in [17].

The translation procedure of the ATROS system is based
on a Viterbi beam-search for the optimal path in a finite-
state network which integrates all the above-mentioned mod-
els. The translation of a source sentence is built by con-
catenating the target strings of the successive transitions that
compose the optimal path.

Obviously, the ATROS system also supports the serial
architecture. In this case, a source language model is sup-
plied to the ATROS system in order to compute a decoded
source sentence. In a second step, ATROS can translate the
decoded source sentence into the target sentence by using a
SFST.

4.2. Tasks and corpora

Two translation tasks of different degrees of difficulty were
used for the experiments. The acoustic data was acquired
by telephone.

In the first one, the translation from Spanish to English
(EUTRANS-0), the SFSTs were learned with a controlled
corpus of 490,000 pairs [4]. The size of the vocabulary
was 686 Spanish words and 513 English words. The bi-
gram test-set perplexities were 8.6 for Spanish and 5.2 for
English. The acoustic models were 26 continuous density
HMMs corresponding to a set of 26 Spanish phone units.
The acoustic models were trained with the HTK Toolkit [18]
using an Spanish corpus of 11,000 running words from 20



speakers. The speech test set was composed of 336 Spanish
sentences uttered by four speakers.

In the second task (EUTRANS) [5], the SFST was learned
with a training corpus of 3,038 pairs that was obtained from
a transcription of a spontaneous speech corpus. The size of
the vocabulary was 2,459 Italian words and 1,701 English
words. The bigram test-set perplexities were 31 for Ital-
ian and 25 for English. The acoustic models were context-
dependent continuous density HMMs selected by the CART
method and trained using the Viterbi approach [19]. The
speech training set was composed of 52,511 running words.
The speech test set was composed by 278 Italian sentences
which had not been used in training.

4.3. Experimental results

The system assessment was performed using two error cri-
teria. One of them was theWord Error Rate (WER)of the
source decoded sentence. The second criterium was the
Translation Word Error Rate (TWER)of the target sentence.
Both values were computed by comparing the decoded sen-
tence or the translated sentence, respectively, with the corre-
sponding reference (source or target) sentences using frac-
tional programming techniques.

The results presented with a serial architecture were
achieved using a trigram language model for the input speech
decoding.

The Italian-English EUTRANS prototype achieved quite
an acceptable response time (about three times real time or
less), while the Spanish-English EUTRANS-0 prototype of-
ten run in less than real time, even on low-cost Pentium ma-
chines.

The results achieved in the EUTRANS-0 and EUTRANS

are presented in Table 1. A complete set of results will be
available in [20].

For the easiest task EUTRANS-0 (controlled task and a
large training set), the results achieved with an integrated
architecture were better than the results achieved with the
serial architecture for both, MGTI and OMEGA learning
techniques. However, for the most difficult task EUTRANS

(spontaneous task and a small training set), the results with
an integrated architecture were worse than the results
achieved with the serial architecture for both, MGTI and
OMEGA learning techniques.

5. DISCUSSION AND CONCLUSIONS

Several systems have been implemented for speech-to-speech
translation based on SFSTs. Some of them were imple-
mented for translation from Italian to English and the others
were implemented for translation from Spanish to English.
All of them support all kinds of finite-state translation mod-
els. They run on low-cost hardware and are fully accessible

Table 1. Experimental results achieved with the integrated
and the serial approaches. “Arch” stands for architecture:
integrated (INT) or serial (SER). “SLM” is the source lan-
guage model used in the experiment: the implicit model in
the SFST learnt by OMEGA or MGTI (for the integrated
architecture), or a 3-grams (for the serial architecture).

EUTRANS-0
Models Arch SLM WER(%) TWER(%)
OMEGA INT OMEGA 8.4 7.6
OMEGA SER 3-grams 8.6 9.4
MGTI INT MGTI 7.5 10.7
MGTI SER 3-grams 8.6 11.6

EUTRANS

Models Arch SLM WER(%) TWER(%)
MGTI SER 3-grams 22.1 37.9
MGTI INT MGTI 32.0 44.8
OMEGA SER 3-grams 22.1 49.4
OMEGA INT OMEGA 52.5 57.0

through standard telephone lines. Response times are close
to or better than real time.

From the results presented, it appears that the integrated
architecture allows for the achievement of better results than
the results achieved with a serial architecture when enough
training data is available to train the SFST. However, when
the training data is insufficient, the results obtained by the
serial architecture were better than the results obtained by
the integrated architecture. This effect is possible because
the source language models for the experiments with the
serial architecture were smoothed trigrams. In the case of
sufficient training data, the source language model associ-
ated to a SFST learnt by the MGTI or OMEGA is better
than trigrams (Section 2.2). However, in the other case (not
sufficient training data) these source languages were worse
than trigrams. Consequently an important degradation is
produced in the implicit decoding of the input utterance. To
overcome the problem of learning SFST for speech transla-
tion with small amounts of training data, it is necessary to
improve the available learning techniques in order to pro-
duce SFST with good source language models.

Acknowledgments

The author would like to thank to the researchers that par-
ticipated in the EUTRANS project and have developed the
methodologies that are presented in this paper. In partic-
ular, the author would like to mention Hermann Ney and
Enrique Vidal, the leaders of two of the teams involved in
the project, as well as Alberto Sanchis for the large number
of experiments that were carried out.



6. REFERENCES

[1] F. Casacuberta, “Inference of finite-state transducers
by using regular grammars and morphisms,” inGram-
matical Inference: Algorithms and Applications, vol.
1891 ofLecture Notes in Artificial Intelligence, pp. 1–
14. Springer-Verlag, 2000.

[2] J.M.Vilar, “Improve the learning of subsequential
transducers by using alignments and dictionaries,” in
Grammatical Inference: Algorithms and Applications,
vol. 1891 ofLenture Notes in Artificial Intelligence,
pp. 298–312. Springer-Verlag, 2000.

[3] E.Vidal, “Finite-state speech-to-speech translation,”
in Proceeding of the IEEE International Conference
on Acoustic Speech and Signal Processing, 1997, pp.
111–114.

[4] J.C. Amengual; J.M. Benedı́; F. Casacuberta; A. Casta
no; A. Castellanos; V.M. Jiḿenez; D. Llorens;
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