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ABSTRACT
The problem of machine translation can be viewed as con-
sisting of two subproblems (a) Lexical Selection and (b)
Lexical Reordering. We propose stochastic finite-state mod-
els for these two subproblems in this paper. Stochastic finite-
state models are efficiently learnable from data, effective
for decoding and are associated with a calculus for compos-
ing models which allows for tight integration of constraints
from various levels of language processing. We present a
method for learning stochastic finite-state models for lexi-
cal choice and lexical reordering that are trained automati-
cally from pairs of source and target utterances. We use this
method to develop models for English-Japanese translation
and present the performance of these models for translation
on speech and text. We also evaluate the efficacy of such
a translation model in the context of a call routing task of
unconstrained speech utterances.

1. INTRODUCTION

The problem of machine translation can be viewed as con-
sisting of two phases: (a) lexical choice phase where ap-
propriate target language lexical items are chosen for each
source language lexical item and (b) lexical reordering phase
where the chosen target language lexical items are rearranged
to produce a meaningful target language string. In this pa-
per, we develop stochastic finite-state transducer (SFST) mod-
els for these two phases which can then be composed into
a single SFST model for Statistical Machine Translation
(SMT). We explore the performance limits of such models
in the context of translation in limited domains. We are also
interested in SFST models since they allow for tight integra-
tion with a speech recognizer for speech-to-speech transla-
tion. In particular, we are interested in one-pass decoding
and translation of speech as opposed to the more prevalent
approach of translation of speech lattices.

Finite state models have been extensively applied to many
aspects of language processing including, speech recogni-
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tion [1, 2], phonology [3], morphology [4], chunking [5, 6]
and parsing [7]. Finite-state models are attractive mecha-
nisms for language processing since they are (a) efficiently
learnable from data (b) generally effective for decoding (c)
associated with a calculus for composing models which al-
lows for straightforward integration of constraints from var-
ious levels of language processing.1

A number of approaches to SMT, including the sem-
inal work at IBM [8], are stochastic string transductions
that map source language strings directly to target language
strings. There are other approaches to SMT where transla-
tion is achieved through tree transductions that map source
language trees to target language trees [9, 10]. There are
also international multi-site projects such as VERBMOBIL [11]
and CSTAR [12, 13] that are involved in speech-to-speech
translation in limited domains. The systems developed in
these projects employ various techniques ranging from example-
based to interlingua-based translation methods for transla-
tion between English, French, German, Italian, Japanese,
and Korean.

Finite-state models for SMT have been previously sug-
gested in the literature [14, 15]. In [14], a deterministic
transducer is used to implement an English-Spanish speech
translation system. In [15], finite-state machine translation
is based on [8] and is used for decoding the target language
string. However, no experimental results are reported using
this approach.

Unlike previous approaches, we subdivide the transla-
tion task into lexical choice and lexical reordering phases.
The lexical choice phase is decomposed into phrase-level
and sentence-level translation models. We use a tree-based
alignment algorithm [9] to obtain a bilingual lexicon. The
phrase-level translation is learned, based on joint entropy
reduction of the source and target languages [16]. A vari-
able length � -gram model (VNSA) [17, 2] is learned for
the sentence-level translation. The reordering step uses po-
sition markers on a tree-structure, but approximates a tree-
transducer using a string-transducer. One of the objectives
of this paper is to explore the impact of this approximation

1Furthermore, software implementing the finite-state calculus is avail-
able for research purposes.



on translation accuracy and task accuracy in limited domain
applications.

In addition, we have used the resulting finite-state trans-
lation method to implement an English-Japanese speech and
text translation system and a Japanese-English text transla-
tion system. We present evaluation results for these systems
and discuss their limitations. We also evaluate the efficacy
of this translation model in the context of a telecom appli-
cation such as call routing.

The layout of the paper is as follows. In Section 2 we
discuss the architecture of the finite-state translation system.
We discuss the algorithms for lexical choice and phrasal
translations in Section 3. The details of our method for
lexical reordering the result of lexical choice is presented
in Section 4. In Section 5 we present the experiments and
evaluation results for the various translation systems on text
and speech input and in the context of a call-routing spoken
dialog system.

2. STOCHASTIC MACHINE TRANSLATION

In machine translation, the objective is to map a source sym-
bol sequence

���������
	�����	������
(
���������

) into a target
sequence

����������	������	�� ��!
(
� �"�#���

). The statistical
machine translation approach is based on the noisy channel
paradigm [8] and the Maximum-A-Posteriori decoding al-
gorithm. The sequence

���
is thought as a noisy version of� �

and the best guess
$�#%� is then computed as

$� %� � &('�)+*,&
-. !0/,1 �2�43 �5�76
� &('�)+*,&
-. ! /,1 � � 3 � � 6 /,1 � � 6

(1)

In [8] they propose a method for maximizing /,1 ����3 �5�76
by estimating /,1 ���86

and /,1 �5��3 �2�96
and solving the prob-

lem in equation 1. Our approach to statistical machine trans-
lation differs from the model proposed in [8] in that:

: We compute the joint model /,1 � � 	;� � 6
from the

bilanguage corpus to account for the direct mapping
of the source sentence

� �
into the target sentence$� �

that is ordered according to the source language
word order. The target string

$�#%� is then computed
as the most likely string based on the target language
model ( < � ) from a subset of all possible reorderings
( <>=. ! ) of the string

$� �
according to Equation (3).

$�2� � &?'@)+*,&�-. !0/,1 �5�A	;���86
(2)$� %� � &?'@) *,&�-B. !DC(E�FG ! / EH! 19I� � 6
(3)

: We decompose the translation problem into local (phrase-
level) and global (sentence-level) source-target string
transduction.

: We automatically learn stochastic automata and trans-
ducers to perform the sentence-level and phrase-level
translation.
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Fig. 1. A block diagram of the stochastic machine transla-
tion system

As shown in Figure 1, the stochastic machine translation
system consists of two phases, the lexical choice phase and
the reordering phase. In the next sections we describe the
finite-state machine components and the operation cascade
that implements this translation algorithm.

3. LEXICAL CHOICE

The first stage in the process of training a lexical choice
model is obtaining an alignment function that given a pair
of source and target language sentences, maps source lan-
guage word subsequences into target language word subse-
quences. For this purpose, we use the alignment algorithm
described in [18] which we briefly present here.

The algorithm takes as input a set of bitexts. We define a
bitext to be a source language sentence paired with its trans-
lation. The algorithm consists of two phases: acquisition of
a translation lexicon and an alignment search. The transla-
tion lexicon specifies a cost for each pairing of source and
target word subsequences2 . In the second phase, an align-
ment search is performed that given a source and target sen-
tence pair, produces a set of pairings of minimum total cost
which maps the source sentence to its target sentence. This
search is carried out in a hierarchical fashion with recur-
sive decomposition of the source and target strings around
a hypothesized head word in the source string and its cor-
responding translation in the target string. The hierarchical
alignment which minimizes the cost function is computed
using a dynamic programming procedure. Some example
bitexts and the result of the alignment procedure are shown
in Figure 2.3 The alignment for the first bitext reads as:
first source word is aligned to the first target word, the sec-
ond source word is aligned to the fifth target word, the third
source word not aligned with any target word and so on.

2We consider source and target word subsequences of 2-1, 1-2, 1-0 and
0-1

3The Japanese string was translated and segmented so that a token
boundary in Japanese corresponds to some token boundary in English.



Eng: I need to make a collect call
Jap: JLK MON>P�QRMTSVUXWZY\[^]`_ba\c^d�egfih
Source:-1 1 4 7 6 4 2
Alignment: 1 5 0 3 0 2 4
Target:-1 3 4 5 1

Eng: I’d like to charge this to my home phone
Jap: JLK j�kXW`J\lZmLlon>p�qsr^t,S�u vxw^y"lOzVh
Source: -1 1 4 2 4 7 5 7 8
Alignment: 1 7 0 6 2 0 3 4 5
Target: -1 6 2 3 4 7 1

Fig. 2. Example bilingual texts with alignment information

The tree structure resulting from the hierarchical decompo-
sition of the source string and the target string is represented
along the third and the fifth line of Figure 2. Each word po-
sition is associated with the word index of its mother in the
tree. The root of the tree is indicated by -1. The tree struc-
ture infomration is used for lexical reordering as discussed
in Section 4.

Note that we use a tree-based alignment unlike the string-
based alignment in IBM statistical models. We believe that
a tree-based alignment is more natural for modeling lexi-
cal reordering operations than a string-based alignment. We
are currently investigating the quality of the dictionary pro-
duced by a tree-based alignment compared to a string-based
alignment.

From the alignment information in Figure 2, it is straight-
forward to compile a bilanguage corpus consisting of source-
target symbol pair sequences { �|����� 1 � � 	�� � 6 ����� , where
the source word

� � �}� ��~��
and its aligned word

� � �� �>~��
(
�

is the null symbol). Note that the tokens of a
bilanguage could be either ordered according to the word
order of the source language or ordered according to the
word order of the target language. From the corpus { , we
train a Stochastic Finite State Transducer (SFST) which is
an extension of the Variable Ngram State Automaton [2].
Stochastic transducers � ���������X������� � ��	���

map the
string

� � ��� �
into

� � �2� �
and assign a probability to

the transduction
� �b� �!�o� �

. In our case, the SFST model
will estimate /,1 � �>� �!�Z� � 6�� /,1 � � 	;� � 6

and the sym-
bol pair 1 � � 	�� � 6 will be associated to each transducer state� with input label

� �
and output label

� �
. The model � ���

provides a string-to-string transduction from
� �

into
� �

.

3.1. Acquiring Phrasal Translations

While word-to-word translation is only approximating the
lexical choice process, phrase-to-phrase mapping can greatly
improve the translation of collocations, recurrent strings,
etc. Moreover, SFSTs can take advantage of the phrasal

correlation to improve the computation of the probability/,1 �5�A	;���96
[16]. In this section, we describe an alternate

method that uses the result of the alignment module as a
seed to acquire bilingual phrases of more than two words
length.

As mentioned above, we use the alignment information
to construct a bilanguage corpus where each token is of the
form (

���
,
� �

). Bilingual phrases can be derived from the
phrases (substrings) of the bilinguage corpus that have high
mutual information score. We acquire bilanguage phrases
from the bilanguage corpus by computing weighted mutual
information metric of � -grams for arbitrarily large values of� . We use a suffix array to compute the frequencies of large� -grams similar to the method presented in [19]. Since the
phrases acquired from a source(target) ordered bilanguage
corpus may not have the target(source) language words in
the order of the target(source) language, we introduce a re-
ordering phase for the words in a phrase which we call local
reordering.

In the local reordering phase, for each phrase we se-
lect an alignment which aligns each source word with some
word(s) in the target phrase. We then reorder the words of
the target phrase such that the reordering corresponds to a
substring (consecutive words) of the target sentence in the
selected alignment. A sample set of phrases after reordering
is illustrated in Table 3.

Japanese Phrases English Phrases������� S��\��� ��� S A T and TJ\l�mLl�n>p5q to my home phoneJ\K�MbN"P�Q�MTS,U�W I need to make aY^[\] _OaLc^d�egfgh collect callJ\K¡d"¢Ow�W¤£\¥�¦�§©¨ how may I helpªV«b¬ yXv�f�v2,¥xY youK^y®d"¢OwbK¤y,wb¯^[\f�h2Y yes could you

Fig. 3. Examples of acquired phrases after reordering of
Japanese phrases



Eng-Jap: J\K°v�w\y,lOz,h±r\t,S�u j�kXW`J\lZmLlon>p5q
Japanese: J\K jik�W`JLl²m\lon>p5q³r^t"S2u v�w^y"lOz,h
Source: -1 4 2 1 6 4 6
Alignment: 1 7 6 2 3 4 5
Target:-1 1 4 2 4 7 2

Fig. 4. Alignment between English-ordered Japanese and Japanese strings

J\K : JLK �
:+1�

:[ �
:[ vxw^y,lbzVh : v´w\y>l�z"h �

:-1
�
:[ r^t"S2u : r^t>S5u �

:]
�
:]�

:+2 j�kXW : j�kXW �
:+1�

:[
�
:[ JLl : J\l �

:]
�
:-1 m\l : mLl �

:+1
�
:[ n>p5q : n>p�q �

: ]
�
:]�

:]

Fig. 5. Bracket representation of a dependency tree with information on reordering words. Each token consists of the form
of a transduction (input:output).

4. LEXICAL REORDERING

The lexical choice model outputs a sequence of target lan-
guage words and phrases for a given source language sen-
tence. Since these target language words and phrases may
not form a well-formed target language sentence, we need
to apply a lexical reordering (sentence-level) operation.

For the lexical reordering operation, the exact approach
would be to search through all possible permutation sequences
of words and phrases and select the most likely sequence.
However, that is computationally very expensive. To over-
come this problem, we decompose the sequence of words
and phrases into a tree with each arc labeled with position
information of the daughter with respect to its mother. This
tree structure could be interpreted as a dependency tree.

We use a stochastic finite-state model to parse the se-
quence of words and phrases into a tree containing reorder-
ing information. We train this SFST from a corpus derived
from an aligned corpus of source-ordered target language
sentence paired with its target sentence (Figure 4). The cor-
pus (Figure 5) consists of bracketed representation of de-
pendency trees which are constructed from the alignment
information shown in Figure 4.

The composition of the reordering finite-state transducer
on the result of the lexical choice model results in strings
that are annotated with reordering instructions. To ensure
we obtain well-formed bracketed strings, we compose the
result with a transducer that checks for all possible well-
formed brackets, for a fixed number of brackets. This can
be regarded as a finite-state approximation of a parathensis
context-free grammar upto a bounded depth. The resulting
string from the composition contains reordering instructions
which are interpreted to form the reordered target language
sentence. Other interesting approaches involve extracting a

context-free grammar from the training corpus and approx-
imating the resulting grammar by a finite-state grammar us-
ing techniques discussed in [20, 21].

Figure 6 shows the sequence of transductions starting
from a source language string that results in a target lan-
guage string. The intermediate steps involved include lex-
ical choice, parse of the source-ordered target string, re-
ordered parse tree for the target string and the final target
string.

5. EXPERIMENTS AND EVALUATION

In this section, we discuss issues concerning evaluation of
the translation system. The data for the experiments re-
ported in this section were obtained from the customer side
of operator-customer conversations, with the customer-care
application described in [22]. Each of the customer’s ut-
terance transcriptions were then manually translated into
Japanese. A total of 15,457 English-Japanese sentence pairs
was split into 12,204 training sentence pairs and 3,253 test
sentence pairs.

5.1. Evaluation of Machine Translation Systems

Evaluation of a machine translation systems has been a sub-
ject of discussion for many years [23, 24]. A universally
acceptable, objective and reliable metric that can be com-
puted automatically is yet to be found. However, in the
interest of evaluating our translation system automatically
and objectively without human intervention, we report the
performance of a machine translation system in application
independent and in the context of an application.

For the application independent evaluation, we employ
two metrics based on string edit distance between the output
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Fig. 6. Sequence of finite-state transductions from English to Japanese

of a translation system and the reference translation string:
simple accuracy and translation accuracy [9]. Simple ac-
curacy is the number of insertion ( Ø©Ù ØÛÚ ), deletion ( ÜÝÙÜ>Ú ) and substitutions ( Þ ) errors between the target language
strings in the test corpus and the strings produced by the
translation model. The metric is summarized in Equation 4.
R is the number of tokens in the target string. This metric
is similar to the string distance metric used for measuring
speech recognition accuracy.

Þ�ßáàVâ ãåäHæ´ç�çéèDêHëÛçéì � 1 ��íîØ´Ù�Ø(ÚÛÙXÜ�Ù�Ü>ÚÛÙ�Þï 6
(4)

The simple accuracy metric, however, penalizes a mis-
placed token twice, as a deletion from its expected position
and insertion at a different position. We use a second met-
ric, Translation Accuracy, shown in Equation 5, which treats
deletion of a token at one location in the string and the in-
sertion of the same token at another location in the string as
one single movement error (M=I+D).4 This is in addition to
the remaining insertion, deletion and substitutions.

ð ê�ë �òñ ãóë�ôõßáö � æ´ç�çéèDê�ë�ç�ì � 1 ��íî÷ Ù�Ø(Ú(Ù�Ü>ÚÛÙ�Þï 6
(5)

For application dependent evaluation of a translation sys-
tem, we employ the translation system in the context of call

4Note that the movement errors are derived after the strings are com-
pared using insertion, deletion and substitution operations.

type classification. We compare the classification accuracy
using the text produced by the translation system against
that produced using the reference text.

5.2. Application Independent Evaluation

Using the training sentence pairs and the procedure described
in the earlier sections, we have developed English to Japanese
and Japanese to English translation systems.

Table 1 presents the performance results of the English
to Japanese translation system using different translation
models, before and after the reordering stage.

In both tables, the unigram, bigram and trigram trans-
lation models do not include any phrases while uniphrase,
biphrase and triphrase models include the automatically ac-
quired phrases. As can be seen, the performance of models
after reordering is significantly better than the performance
before reordering.

5.2.1. Spoken Language Translation

The English-Japanese translation system was used to trans-
late spoken language as well. The composed lexical choice
transducer and lexical reordering transducer can be directly
plugged into a speech recognizer in conjunction with the
source language acoustic model to produce a source-speech
to target-text system. We will report the result of such a sys-
tem in the final version of this paper. Currently, we report
performance on one-best output of a speech recognizer as
the input to the translation system.



Trans Accuracy Accuracy
VNSA before after
order Reordering Reordering

Unigram 23.8 32.2
Bigram 56.9 69.4
Trigram 56.4 69.1

UniPhrase 44.0 46.8
BiPhrase 60.4 69.8
TriPhrase 58.9 66.7

Table 1. Translation Accuracy of the English to Japanese
Translation System with and without phrases, before and
after reordering on text.

A VNSA-based trigram language model that was trained
on the 12204 training sentences was used as the language
model for the speech recognizer. An off-the-shelf context
dependent acoustic model for telephone speech was used
as the acoustic model. The word accuracy of the speech
recognizer on the test data is 74.3%. Table 2 summarizes
the translation accuracies of various models on the one-best
output of the speech recognizer. The simple and transla-
tion accuracy of the triphrase-based translation system on
the one-best output of the recognizer is 56.9% respectively.

Trans Accuracy Accuracy
VNSA order before after

Reordering Reordering
Unigram 21.4 21.7
Bigram 48.9 55.7
Trigram 49.0 56.8

UniPhrase 39.3 39.6
BiPhrase 51.3 56.5
TriPhrase 50.9 56.9

Table 2. Translation Accuracy of the English to Japanese
Translation System with and without phrases, before and
after reordering on one-best output of the speech recognizer.

5.3. Application Dependent Evaluation: Call Type Clas-
sification

The objective of this experiment is to measure the perfor-
mance of a translation system in the context of an applica-
tion, in our case, a call type classification application task
called the How May I Help You? [25] task. We briefly re-
view the problem and the spoken language system. The goal
is to sufficiently understand caller’s responses to the open-
ended prompt How May I Help You? and route such a call
based on the meaning of the response. Thus we aim at ex-
tracting a relatively small number of semantic actions from
the utterances of a very large set of users who are not trained

to the system’s capabilities and limitations.
The first utterance of each transaction has been tran-

scribed and marked with a call-type by labelers. There are
14 call-types plus a class other for the complement class.
In particular, we focused our study on the classification of
the caller’s first utterance in these dialogs. The spoken sen-
tences vary widely in duration, with a distribution distinc-
tively skewed around a mean value of 5.3 seconds corre-
sponding to

�ùø
words per utterance. Some examples of the

first utterances are given below:

: Yes ma’am where is area code two zero
one?

: I’m tryn’a call and I can’t get it to
go through I wondered if you could try
it for me please?

: Hello

In an automated call router there are two important per-
formance measures. The first is the probability of false re-
jection, where a call is falsely rejected or classified as other.
Since such calls would be transferred to a human agent, this
corresponds to a missed opportunity for automation. The
second measure is the probability of correct classification.
Errors in this dimension lead to misinterpretations that must
be resolved by a dialog manager [26].

Using our approach described in the previous sections,
we have trained a unigram, bigram and trigram VNSA based
translation models with and without phrases. Table 3 shows
lexical choice (bag-of-tokens) accuracy for these different
translation models measured in terms of recall, precision
and F-measure.

Trans Recall Precision F-Measure
VNSA order (

ï
) ( / ) ú %@ûA%@üý ûòþ7ü�ÿ

Unigram 31.1 92.2 46.5
Bigram 65.4 89.9 75.8
Trigram 63.2 91.5 74.7

Phr. Unigram 41.9 92.9 57.8
Phr. Bigram 66.7 89.3 76.4
Phr. Trigram 65.3 89.9 75.7

Table 3. Lexical choice accuracy of the Japanese to English
Translation System with and without phrases

In order to measure the effectiveness of our translation
models for this task we classify Japanese utterances based
on their English translations. We trained a classifier on the
training set of English sentences each of which was anno-
tated with a call type. The classifier searches for phrases
that are strongly associated with one of the call types [25]
and in the test phase the classifier extracts these phrases



from the translation output. Figure 7 plots the false rejec-
tion rate against the correct classification rate of the clas-
sifier on the English generated by three different Japanese
to English translation models for the set of Japanese test
sentences. The figure also shows the performance of the
classifier using the correct English text as input.
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Fig. 7. Plots for the false rejection rate against the correct
classification rate of the classifier on the English generated
by three different Japanese to English translation models

There are a few interesting observations to be made from
the Figure 7. Firstly, the task performance on the text data is
asymptotically similar to the task performance on the trans-
lation output. In other words, the system performance is not
significantly affected by the translation process; a Japanese
transcription would most often be associated with the same
call type after translation as if the original were English. We
believe that this result is due to the nature of the application
where the classifier is mostly relying on the existence of
certain key words and phrases.

The task performance improved from the unigram-based
translation model to phrase unigram-based translation model
corresponding to the improvement in the lexical choice ac-
curacy in Table 3. Also, at higher false rejection rates, the
task performance is better for trigram-based translation model
than the phrase trigram-based translation model since the
precision of lexical choice is better than that of the phrase
trigram-based model as shown in Table 3. This difference
narrows at lower false rejection rate.

We are currently working on evaluating the translation
system in an application independent method and develop-
ing improved models of reordering needed for better trans-
lation system.

6. CONCLUSION

We have presented an architecture for speech translation in
limited domains based on the simple machinery of stochas-
tic finite-state transducers. We have implemented stochas-
tic finite-state models for English-Japanese and Japanese-
English translation in limited domains. These models have
been trained automatically from source-target utterance pairs.
We have evaluated the effectiveness of such a translation
model in the context of a call-type classification task.
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