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Speech Enhancement 

Enhancing 

• Speech enhancement aims at improving the intelligibility and/or 
overall perceptual quality of degraded speech signals using audio 
signal processing techniques 

• One of the most addressed classical SP problems in recent years 

Noisy speech, 
Exhibition, SNR=5dB 

Clean speech, 8kHz 
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Speech Enhancement Applications 

Mobile phone/ 
communication 

Hearing aids 

Security monitoring/  
intelligence 

Robust speech 
/speaker/language 
recognition, etc. 
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Noise in Speech Enhancement 

1. Additive noise: 

𝑌 𝑛, 𝑑 = 𝑋 𝑛, 𝑑 + 𝑁(𝑛, 𝑑) 
STFT 

𝑦 𝑡 = 𝑥 𝑡 + 𝑛 𝑡  

2. Convolutional noise: 

𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡  

Focused 
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3. Mixed noise: 

𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡 + 𝑛 𝑡  

𝑦 𝑡 = [𝑥 𝑡 + 𝑣 𝑡 ] ∗ ℎ 𝑡 + 𝑛 𝑡  
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Conventional Speech Enhancement 

 Classified by the number of microphones 

1. Single channel speech enhancement methods 
 Time and frequency information 

2.     Microphone based speech enhancement methods 
 Time and frequency information 
 Spatial information 
 Microphone arrays 

Focused 
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Conventional Single Channel SE 

1. Spectrum Subtraction, SS 
2. Wiener Filtering 
3. Minimum Mean Square Error Short-Time Spectral 

Amplitude, MMSE-STSA  
4. MMSE Log Spectral Amplitude, MMSE-LSA  
5. Optimally Modified LSA, OM-LSA 
6. …… 

Zaragoza, 27/05/14 9 

Conventional Single Channel SE 

STFT
Amplitude 
Squared 

( )y t ( , )Y l k Noise 
Estimation

2
( , )Y l k

Gain 
Function 

Calculation

ˆ ( , )d l k

ISTFT
ˆ( )x t ( , )G l k



1. STFT on the noisy signal y, get the time-frequency signal 𝑌 
2. estimate the variance of noise 𝜆 𝑑 
3. estimate all of the parameters (prior SNR 𝛾, posterior SNR 𝜉 and the 

speech presence probability, etc.) needed by the gain function 
4. calculate the gain function G  
5. multiply 𝑌 with G, then ISTFT to obtain the enhanced signal (using 

the phase of noisy speech) 
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Conventional Single Channel SE: Issues 

Enhanced by SS 

1. Musical noise: 

Noisy speech, exhibition 
noise, SNR=5dB 

Zaragoza, 27/05/14 11 

2. Difficult to deal with the highly non-stationary noise: 

Enhanced by OM-LSA Noisy, Machine Gun, 
SNR=-5dB 

Zaragoza, 27/05/14 12 

Conventional Single Channel SE: Issues 
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3. Difficult to deal with the low SNR cases: 

Enhanced by OM-LSA Noisy, AGWN, SNR=-5dB 

Easily distorting the 
speech components and 
has much residual noise 

Zaragoza, 27/05/14 13 

Conventional Single Channel SE: Issues 

4. Introducing some non-linear distortion which is 
fatal for the back-end recognition, coding, etc. 

5. Learning from human listening experience: 
many years of exposure to clean speech and noise 

Zaragoza, 27/05/14 14 

Conventional Single Channel SE: Issues 
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• Analysis of these disadvantages 

2 2 2
{ ( ,d) } { (n,d) } { (n,d) }

(n,d) (n,d) (n,d)x d

E Y n E X E N

  

 

 

Gaussian assumptions 
Un-correlated assumptions 

0

1

(n,d) : (n,d) (n,d)

(n,d) : (n,d) (n,d) (n,d)

H Y N

H Y X N



 

Binary model assumptions: 

With these inaccurate assumptions, it is hard for conventional 
methods to deliver a satisfactory performance! 

Zaragoza, 27/05/14 
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Conventional Single Channel SE: Issues 

𝑌 𝑛, 𝑑 = 𝑋 𝑛, 𝑑 + 𝑁(𝑛, 𝑑) 
STFT 

𝑦 𝑡 = 𝑥 𝑡 + 𝑛 𝑡  

Outline 

• Speech enhancement 
 Background 
 Conventional speech enhancement methods 
 

• Speech enhancement based on deep neural networks 
 2.1 Background 
 DNN baseline and enhancement 
 Noise-universal SE-DNN 
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DNN-Based Speech Enhancement 

 Many enhancement methods are derived from this signal model, however, 
most of them assume that 𝑋 n, 𝑑  is described by a Gaussian mixture model 
(GMM) and 𝑁(n, d) is a single Gaussian. The relationship between the 
speech and noise is complicated in some non-linear fashion. 

𝑌 𝑛, 𝑑 = 𝑋 𝑛, 𝑑 + 𝑁(𝑛, 𝑑) 
STFT 

𝑦 𝑡 = 𝑥 𝑡 + 𝑛 𝑡  

• The signal model of the additive noise: 

X= 𝐹(𝑌) 

• DNN assumes a nonlinear mapping function F: 

 Construct the stereo data based on the additive noise model 
 No special assumptions were made in the DNN based SE method  

Zaragoza, 27/05/14 17 

Deep Neural Network: Overview 

Mathematical 
approximation 

Hidden layer 
Output  
layer 

Input 
layer 

1. Hinton proposed the unsupervised Restricted Boltzmann 
Machine (RBM) based pre-training in 2006 

2. In 2012, MSR, Google and IBM got a great success in large 
vocabulary continuous speech recognition using DNNs 

3. Later, DNNs were adopted in many speech-related tasks 

Zaragoza, 27/05/14 18 
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4. In 2013, Xugang Lu 
proposed deep de-
noising auto-encoder 
based speech 
enhancement 

X.-G. Lu, Y. Tsao, S. Matsuda and C. Hori, “Speech enhancement based on deep 
denoising Auto-Encoder,” Proc. Interspeech, pp. 436-440, 2013. 23 

DNN Based SE: Related Work 

6. In 2013, Deliang Wang proposed using DNN to classify 
the time-Frequency bins into 1/0 units (ideal binary mask) 

T-F units 
level feature 
extraction

DNN-based sub-
band 

classification

Waveform 
reconstruction

Cochlear 
Filtering

Estimated IBM

Noisy 
speech

Enhanced 
speech

Y. X. Wang and D. L. Wang, “Towards scaling up classification based speech separation,” IEEE 
Trans. on Audio, Speech and Language Processing, Vol. 21, No. 7, pp. 1381-1390, 2013. 

DNN Based SE: Related Work 

IBM-DNN enhanced 
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• Advantages of SE-DNN 

1. The complicated relationship between noisy and 

clean speech could be automatically learnt 
 

2. The deep architecture could well fit the non-linear 

relationship for regression function approximation 
 

3. The highly non-stationary noise could be well 

suppressed in the off-line learning framework 
 

4. Nearly no Gaussian or independent assumptions 
 

5. Nearly no empirical thresholds to avoid the non-linear 

distortion in SS-based speech enhancement 

Zaragoza, 27/05/14 26 

DNN Based SE: Issues 

1. Which domain is suitable for DNN-based mapping? 

 

2. The generalization capacity to unknown environments, 

especially for unseen noise types? 

 

3. How to perform noise adaptation? – robustness issue 

Zaragoza, 27/05/14 27 

• Difficulties in using SE-DNN 

DNN Based SE: Issues 
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System Overview 

Clean/Noisy 

Samples

Feature 

Extraction

DNN 

Training

Noisy 

Samples

Feature 

Extraction

DNN 

Decoding

Waveform 

Reconstruction

Training Stage

Enhancement Stage

tY lY lX̂
tX̂

fY

1. Feature extraction: log-power spectra 
2. Waveform reconstruction: overlap-add algorithm 
3. DNN Training: RBM pre-training + back-propagation fine-tuning 

Zaragoza, 27/05/14 29 
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DNN Training 

… 

𝑾𝟏 + 𝜺𝟏 

𝑾𝟐 + 𝜺𝟐 

𝑾𝟑 + 𝜺𝟑 

2. Fine-tuning 

… 

… 

… 

… 

𝑾𝟒 1.Pre-training 

h3 

h2 

h1 

(Input with multiple frames of noisy speech features) 

(Output with a single frame of clean speech features) 

1. MMSE-based object function: 𝐸 =
1

𝑁
  (𝑋 𝑛

𝑑 𝑾, 𝒃 − 𝑋𝑛
𝑑)2+𝜆 𝑾 2

2𝐷
𝑑=1

𝑁
𝑛=1  30 

Experimental Setup  
1. Clean speech set: TIMIT corpus, 8kHz 
2. Noise set: Additive Gaussian White Noise (AGWN), Babble, 

Restaurant, Street 
3. Signal to Noise ratios: Clean, 20dB, 15dB, 10dB, 5dB, 0dB, -5dB 
4. Construct 100 hours multi-condition training data 
5. Test set: 200 randomly selected utterances from TIMIT test set, 

and two unseen noise types: Car and Exhibition 
6. Three objective quality measures: segmental SNR (SegSNR in 

dB), log-spectral distortion (LSD in dB), perceptual evaluation of 
speech quality (PESQ) 

7. Standard DNN configurations: 11 frames expansion, 3 hidden 
layers and 2048 hidden units for each 

8. Competing methods: improved version of the optimally 
modified log-spectral amplitude (OM-LSA), denoted as log-
MMSE (L-MMSE)  

Zaragoza, 27/05/14 31 
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Baseline Experimental Results: I 
1. Average LSD using input with different acoustic context on the test 
set at different SNRs across four noise types: A good choice: 11 frames 

Zaragoza, 27/05/14 32 

Baseline Experimental Results: II 
2. Average SegSNRs using different training set size on the test set at 
different SNRs across four noise types: still improving with 100 hours 

Zaragoza, 27/05/14 33 
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Baseline Experimental Results: III 

• Deep structure can get better performance compared with SNN. 
• 𝐷𝑁𝑁3 outperforms the L-MMSE method, especially at low SNRs. 

3. Average PESQs among methods on the test set at different SNRs 
with four noise types. The subscript of 𝐷𝑁𝑁𝑙 represents 𝑙 hidden layers 

Noisy L-MMSE SNN* 𝑫𝑵𝑵𝟏 𝑫𝑵𝑵𝟐 𝑫𝑵𝑵𝟑 𝑫𝑵𝑵𝟒 

SNR20 2.99 3.32 3.48 3.46 3.59 3.6 3.59 

SNR15 2.65 2.99 3.26 3.24 3.35 3.36 3.36 

SNR10 2.32 2.65 2.99 2.97 3.08 3.1 3.09 

SNR5 1.98 2.3 2.68 2.65 2.76 2.78 2.78 

SNR0 1.65 1.93 2.32 2.29 2.38 2.41 2.41 

SNR-5 1.38 1.55 1.92 1.89 1.95 1.97 1.97 

Ave 2.16 2.46 2.78 2.75 2.85 2.87 2.87 

*Shallow Neural Network (SNN) has the same computation complexity with 𝐷𝑁𝑁3 

Zaragoza, 27/05/14 34 

Baseline Experimental Results: IV 

• SE-DNN has a generalization capacity to unseen noise types. It can 
be further strengthened by adding more noise types in training 

4. PESQs among Noisy, L-MMSE, SNN and 𝐷𝑁𝑁3 at different SNRs in 
mismatch environments under Car (A) and Exhibition (B) noises,  

Noisy L-MMSE SNN 𝑫𝑵𝑵𝟑 
A B A B A B A B 

SNR20 3.15 2.89 3.52 3.19 3.43 3.24 3.58 3.30 
SNR15 2.81 2.55 3.23 2.85 3.19 2.96 3.31 3.01 
SNR10 2.47 2.21 2.89 2.51 2.93 2.66 3.03 2.69 
SNR5 2.14 1.87 2.57 2.11 2.60 2.30 2.71 2.33 
SNR0 1.81 1.56 2.21 1.72 2.24 1.92 2.35 1.93 
SNR-5 1.52 1.28 1.82 1.34 1.85 1.52 1.96 1.54 
Ave 2.32 2.06 2.70 2.29 2.71 2.43 2.83 2.47 

Zaragoza, 27/05/14 35 
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Baseline Experimental Results V 

DNN enhanced 
PESQ=3.39 

L-MMSE enhanced 
PESQ=2.64 

Clean, PESQ=4.5 Noisy, street, SNR=10dB, 
PESQ=2.2 

DNN can deal 
with non-
stationary 
noise given 
some noise 
characteristics 
to learn. 

More demos could be found at: http://home.ustc.edu.cn/~xuyong62/demo/SE_DNN.html 
 

Zaragoza, 27/05/14 36 

Over-smoothing with SE-DNN (1/2) 

1. The global variances of the training set were shown. 𝐺𝑉𝑟𝑒𝑓(𝑑) and 𝐺𝑉𝑒𝑠𝑡(𝑑)  

represented the d-th dimension of the global variance of the reference features 
and the estimation features, respectively. And the corresponding dimension-
independent variances were denoted as 𝐺𝑉𝑟𝑒𝑓 and 𝐺𝑉𝑒𝑠𝑡 37 

http://home.ustc.edu.cn/~xuyong62/demo/SE_DNN.html
http://home.ustc.edu.cn/~xuyong62/demo/SE_DNN.html
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2. The formant peaks were suppressed, especially in the high 
frequency band which leads to muffled speech 

           DNN enhanced                      Clean          AGWN, SNR=0dB 

Zaragoza, 27/05/14 38 

Over-smoothing with SE-DNN (2/2) 

Methods to Address Over-smoothing 

• The definition of global variance equalization factors: 

𝛼(𝑑) =
𝐺𝑉𝑟𝑒𝑓(𝑑)

𝐺𝑉𝑒𝑠𝑡(𝑑)
 𝛽 =

𝐺𝑉𝑟𝑒𝑓

𝐺𝑉𝑒𝑠𝑡
 𝛼 =

1

𝐷
 𝛼(𝑑)

𝐷

𝑑=1

 

• Proposed method 1: post-processing 

𝑋 ′′ 𝑑 = 𝑋 𝑑 ∗ 𝜂 ∗ 𝑣(𝑑) + 𝑚(𝑑) 

where 𝑚(𝑑) and 𝑣(𝑑) are the d-th component of the mean and variance 
of input noisy features, respectively. And η could be 𝛽 , 𝛼(𝑑) or 𝛼  

• Proposed method 2: post-training 

𝐸 =
1

𝑁
  (𝑋 𝑛

𝑑 𝑾, 𝒃 − η ∗ 𝑋𝑛
𝑑)2+𝜆 𝑾 2

2

𝐷

𝑑=1

𝑁

𝑛=1
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GV Experimental Results (1/2) 

1.  𝛼  is better than 𝛽, and 𝛼(𝑑) is the worst, indicating that the 
degree of over-smoothing on different dimensions was similar 

2. Equalization operations were much more beneficial for high SNRs 
3. Post-training was a little better than Post-processing 

PESQ results of the L-MMSE method and DNN baseline, compared 
with different post-processing and post-training schemes using 𝛽, 
𝛼(𝑑) and 𝛼  on the test set at different SNRs across four noise types 

L-MMSE DNN 
Post-processing Post-training 

𝜷 𝜶(𝒅) 𝜶  𝜷 𝜶(𝒅) 𝜶  
SNR20           3.32            3.60            3.71            3.69            3.71            3.72            3.70            3.72  
SNR15           2.99            3.36            3.47            3.45            3.48            3.48            3.46            3.49  
SNR10           2.65            3.10            3.18            3.17            3.19            3.20            3.18            3.20  
SNR5           2.30            2.78            2.85            2.84            2.85            2.86            2.85            2.86  
SNR0           1.93            2.41            2.45            2.44            2.45            2.46            2.46            2.47  
SNR-5           1.55            1.97            1.99            1.99            1.99            2.01            2.00            2.02  
Ave           2.46            2.87            2.94            2.93            2.94            2.95            2.94            2.96  

40 

GV Experimental Results (2/2) 

1. GV equalization is slightly more effective for unseen noise types 
2. Post-training was a little better than Post-processing 

PESQ results in unseen environments under Car and Exhibition noises, 
labeled as case A and B, respectively. The DNN baseline was 
compared with the L-MMSE method and the proposed two global 
variance equalization approaches using the factor 𝛼  : 

L-MMSE DNN Post-processing Post-training 
A B A B A B A B 

SNR20           3.52            3.19            3.58            3.30            3.72            3.46            3.73            3.46  

SNR15           3.23            2.85            3.31            3.01            3.46            3.15            3.47            3.16  

SNR10           2.89            2.51            3.03            2.69            3.16            2.81            3.16            2.82  

SNR5           2.57            2.11            2.71            2.33            2.81            2.42            2.82            2.43  

SNR0           2.21            1.72            2.35            1.93            2.44            2.00            2.44            2.01  

SNR-5           1.82            1.34            1.96            1.54            2.04            1.59            2.04            1.60  

Ave           2.70            2.29            2.83            2.47            2.94            2.57            2.94            2.58  

Zaragoza, 27/05/14 41 
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Summary I: DNN-SE Properties 
1. SE-DNN achieves better performance than traditional single 

channel speech enhancement methods (e.g., OM-LSA), 
especially for low SNRs and non-stationary noise. 

2. A large training set is crucial to learn the rich structure of DNN 
3. Using more acoustic context information improves performance 

and makes the enhanced speech less discontinuous 
4. Multi-condition training can deal with speech enhancement of 

new speakers, unseen noise types, various SNR levels under 
different conditions, and even cross-language generalization. 

5. The over-smoothing problem in SE-DNN could be alleviated 
using two global variance equalization methods, and the 
equalization factor tends to be independent with the dimension 

6. The global variance equalization was much more helpful for 
unseen noise types 

Zaragoza, 27/05/14 42 

Outline 

• Speech enhancement task 
 Backgrounds 
 Conventional speech enhancement methods 
 

• Speech enhancement based on deep neural networks 
 SE-DNN: background 
 DNN baseline and enhancement 
 Noise-universal SE-DNN 
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Noise Universal SE-DNN 

Abundant

Clean/Noisy 

Samples

Feature 

Extraction

DNN Dropout 

Training

Noisy 

Samples

Feature 

Extraction

DNN 

Enhancing

Waveform 

Reconstruction

Training Stage

Enhancement Stage

tY lY
lX̂ tX̂

fY

Noise 

Estimation

Post-

processing

*The global variance equalization was adopted in the post-processing. 

Zaragoza, 27/05/14 44 

Noise Universal SE-DNN 
1. DNN to learn the characteristics of many noise types 

 Classifications： 
Crowding、machine、
transportation、animal、
nature、human, etc. 

alarm cry 

G. Hu, 100 non-speech environmental sounds, 2004. 
http://www.cse.ohiostate.edu/pnl/corpus/HuCorpus.html. Zaragoza, 27/05/14 45 

http://www.cse.ohiostate.edu/pnl/corpus/HuCorpus.html
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Noise Universal SE-DNN 
      2. Noise aware training 

• Using the average feature of the first T frames of the 
current utterance to help DNN to learn a “noise code” 

3. Dropout learning 
• Randomly disable some units of the input layer and the 

hidden layers to improve generalization capacity (0.1 for 
the input layer and 0.2 for the hidden layers) 
 

• Regulation technology and avoid over-fitting 

Zaragoza, 27/05/14 46 

Experimental Setup  

1. Clean speech training set: TIMIT corpus, 8kHz 
2. Noise training set: 104 noise types 
3. Signal to Noise ratios: Clean, 20dB, 15dB, 10dB, 5dB, 0dB, -5dB 
4. Construct 100/625 hours multi-condition training data 
5. Test set: 200 randomly selected utterances from the TIMIT test 

set corrupted by the noises from the NOISEX-92 database 
6. Three objective quality measures: segmental SNR (SegSNR in 

dB), log-spectral distortion (LSD in dB), perceptual evaluation of 
speech quality (PESQ) 

7. Standard DNN configurations: 11 frames context expansion, 3 
hidden layers and 2048 hidden units for each hidden layer 

8. Competing state-of-the-art methods: improved version of the 
optimally modified log-spectral amplitude (OM-LSA), denoted 
as log-MMSE (L-MMSE)  

Zaragoza, 27/05/14 47 
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Enhanced Experimental Results: I 

Abundance of noise types is important to predict unseen noise types  

• LSD comparison between models trained with four noise types 
(4NT) and 104 noise types (104NT) on the test set at different 
SNRs of three unseen noise environments : 

Zaragoza, 27/05/14 48 

Enhanced Experimental Results: II 

1. SE-DNN can suppress the highly non-stationary noise and get less residual noise 
2. Dropout and NAT can reduce noise while GV equalization can brighten speech  

• Spectrograms of an utterance tested with Exhibition noise at SNR= 5dB. (a) noisy 
(PESQ=1.42), (b) LogMMSE (PESQ=1.83), (c) DNN baseline (PESQ=1.87), (d) 
improved by dropout (PESQ=2.06), (e) improved by GV equalization (PESQ=2.00), 
(f) improved by dropout and GV (PESQ=2.13), (g) jointly improved by dropout, 
NAT and GV equalization (PESQ=2.25), and the clean (PESQ=4.5): 

Zaragoza, 27/05/14 49 
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Enhanced Experimental Results: III 
• Spectrograms of an utterance with machine gun noise at SNR= -5dB: 

with 104-noise DNN enhanced (upper left, PESQ=2.78), Log-MMSE 
enhanced (lower left, PESQ=1.86), 4-noise DNN enhanced (upper 
right, PESQ=2.14), and noisy speech (lower right, PESQ=1.85): 

104NT-DNN 
enhanced PESQ=2.78 

Log-MMSE enhanced 
PESQ=1.86 

4NT-DNN enhanced 
PESQ=2.14 

noisy，machine gun，
SNR=-5dB PESQ=1.85 

Even the 4NT-DNN 
is much better than 
LogMMSE, SE-DNN 
can suppress highly 
non-stationary noise 

Zaragoza, 27/05/14 50 

Enhanced Experimental Results: IV 
• Average PESQ among LogMMSE, DNN baseline with 100 hours 

data, improved DNN with 100 hours data and improved DNN with 
625 hours data on the test set at different SNRs across the whole 
15 unseen noise types in the NOISEX-92 database: 

1. A good generalization capacity to unseen noise can be obtained. 
2. SE-DNN outperformed the Log-MMSE, especially at low SNRs 

Zaragoza, 27/05/14 51 
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Enhanced Experimental Results: V 
• Spectrograms of a noisy utterance extracted from the movie Forrest 

Gump with: improved DNN (upper left), Log-MMSE (upper right), 
and noisy speech (bottom left): with real-world noise never seen 

• Good generalization capacity 
to real-world noisy speech  

• Could be further improved by 
adding more varieties of clean 
data into the training set 

Universal SE-DNN enhanced Log-MMSE enhanced 

Noisy 
Zaragoza, 27/05/14 52 

Summary II: Noise-Universal DNN 

1. Noise aware training (NAT) and dropout learning could suppress 
more residual noise 
 

2. GV equalization could highlight the speech spectrum to get a 
better hearing perception 
 

3. The generalization capacity to unseen noise types could be 
strengthened by adopting more noise types in the training set 
 

4. Noise-universal SE-DNN was also effective in dealing with noisy 
speech recorded in the real world 
 

5. The generalization capacity could be further improved by 
adding clean speech data (encompassing different languages, 
various speaking styles, etc.) into the training set 
 

6. Future work: DNN adaption and other objective functions 

Zaragoza, 27/05/14 53 
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Other Recent Efforts 

1. Demos: http://home.ustc.edu.cn/~xuyong62/demo/SE_DNN.html  
 

2. Speech separation: DNN-based semi-supervised speech separation 
works better than state-of-the-art supervised speech separation 
(paper submitted to Interspeech2014  
 

3. Dual-Output DNN for separation (submitted to ISCSLP2014) 
 

4. Robust speech recognition: better results than state-of-the-art 
with only DNN-based  pre-processing, additional compensation can 
be added later (paper submitted to Interspeech2014) 
 

5. Transfer language learning for DNN (submitted to ISCSLP2014) 
 

6. DNN-based bandwidth expansion works better than all other state-
of-the-art techniques (submitted to publication)  
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